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Executive Summary 

Nichtwohngebäude spielen eine entscheidende Rolle für die Energiewende, da sie für über ein Drittel des 

Energieverbrauchs im Gebäudesektor verantwortlich sind. Aufgrund ihrer Größe, vielfältigen Nutzung und 

technischen Ausstattung bieten sie ein erhebliches Potenzial zur Steigerung der Energieeffizienz und zur Re-

duktion von CO₂-Emissionen. Die fortschreitende Digitalisierung der Energiewirtschaft – insbesondere durch 

intelligente Mess- und Steuersysteme – schafft die Grundlage für innovative Geschäftsmodelle, ermöglicht 

marktorientierte Lastverschiebungen und gewährleistet eine sichere, netzorientierte Steuerung dezentraler 

Energieanlagen. KI-basierte Energiemanagementsysteme eröffnen die Möglichkeit, komplexe Gebäudesys-

teme adaptiv, wirtschaftlich und netzorientiert zu steuern und begegnen damit den Herausforderungen vola-

tiler Strommärkte und sich stetig weiterentwickelnder regulatorischen Anforderungen. 

Mehrwert und Potenziale: Die Integration dynamischer Strompreise und netzorientierter Steuerungssignale 

erlaubt es Nichtwohngebäuden, aktiv in den Energiemarkt integriert zu werden und ihre Flexibilität gezielt zu 

vermarkten. KI-basierte Steuerungssysteme bieten das Potenzial, Energiekosten zu senken und CO₂-Emissio-

nen zu reduzieren, ohne dabei Komfortanforderungen zu vernachlässigen. Dies wird durch die optimierte 

Nutzung von Eigenstrom, Energiespeichern und dynamischen Strompreisen erzielt. Das Projekt stellt eine 

erprobte Blaupause für Start-ups bereit, die skalierbare, KI-gestützte Geschäftsmodelle unter Einbeziehung 

intelligenter Mess- und Steuersysteme entwickeln möchten. 

Kernaussagen & zentrale Ergebnisse: Am Pilotstandort wurde ein auf Reinforcement Learning basierender 

KI-Agent erfolgreich für das Energiemanagement von Ladesäulen, Wärmepumpe und Photovoltaik-Anlage 

implementiert. Dies umfasste eine Cloud-Edge-Architektur sowie die sichere Integration in die intelligente 

Mess- und Steuerungs-Infrastruktur. Die KI-gestützte Steuerung ermöglichte eine signifikante Verschiebung 

von Ladevorgängen und Wärmeerzeugung in günstige Preisfenster unter Berücksichtigung netzorientierter 

Steuersignale. Die Funktionalität und Wirksamkeit des KI-Energiemanagementsystems wurden durch Labor- 

und Feldtests unter realen Bedingungen validiert. Dabei wurden Herausforderungen wie Datenverfügbarkeit, 

Schnittstellenvielfalt und Zielkonflikte (z. B. Komfort vs. Kosten) identifiziert und adressiert. Die Umsetzung 

dynamischer Tarife (§41a EnWG), zeitvariabler Netzentgelte und netzorientierter Steuerung (§14a EnWG) 

wurde technisch und prozessual demonstriert. Empfohlene nächste Schritte umfassen die Entwicklung do-

mänenspezifischer KI-Agenten für einzelne Sektoren wie Wärme und E-Mobilität, den Einsatz von Multi-Agen-

ten-Systemen und Transfer Learning zur Übertragbarkeit auf andere Nichtwohngebäude, die Förderung offe-

ner Schnittstellen und Standardisierung – insbesondere für die Integration von Preissignalen und Steuerbe-

fehlen – sowie die Ergänzung der KI-basierten Optimierung durch regelbasierte Fallback-Mechanismen zur 

Sicherstellung von Betriebssicherheit und Regulatorik. 

Bedeutung für Start-ups und Ausblick: Für Start-ups eröffnen sich durch das Projekt vielfältige Geschäfts-

chancen: Auf Basis der Projektergebnisse können sie gemeinsam mit Forschungseinrichtungen und weiteren 

Partnerinstitutionen innovative, KI-gestützte Services für Energiemanagement, Flexibilitätsvermarktung und 

sektorübergreifende Optimierung entwickeln. Die modulare Systemarchitektur ermöglicht eine Übertragbar-

keit auf verschiedene Nichtwohngebäude-Typen wie Büros, Hotels, Handelsimmobilien, Bildungs- und Ge-

sundheitseinrichtungen. Das Projekt setzt damit einen wichtigen Innovationsimpuls und zeigt, dass KI-ba-

sierte Steuerung in Nichtwohngebäuden nicht nur technisch realisierbar, sondern auch wirtschaftlich und 

regulatorisch attraktiv ist – und so einen bedeutenden Beitrag zur Transformation der Energiewirtschaft leis-

ten kann.  
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1 Vorwort 

Intelligente Messsysteme (iMSys) bilden die Grundlage für die notwendige Digitalisierung der Energiewende. 

Sie ermöglichen es, Flexibilitätspotenziale zu nutzen, was beim Betrieb eines Stromsystems mit zunehmend 

volatilem Erzeugungsanteil zu wesentlichen Effizienzgewinnen führt. Als zentrales Kommunikationselement 

in einem digitalisierten Energiesystem ermöglichen iMSys ein netzdienliches Management steuerbarer Ver-

brauchseinrichtungen (SteuVE) und dezentraler Erzeugungsanlagen und liefern wichtige Netzzustandsdaten 

für mehr Transparenz in den Verteilnetzen. Darüber hinaus erhalten Gebäudebetreiberinnen und -betreiber 

durch den Einsatz von iMSys Transparenz über ihren Stromverbrauch und können im Rahmen innovativer 

Geschäftsmodelle wie z. B. dynamischer Tarife und Flexibilitätsvermarktung effektives Energiemanagement 

(EMS) betreiben und Kosten sparen. So fördern iMSys sowohl auf Netz- als auch auf Verbraucherseite ein in-

telligentes, effizientes und zukunftsfähiges EMS. 

Insbesondere Nichtwohngebäude (NWG) spielen bei der Transformation des Energiesystems und beim Ein-

satz von iMSys eine besondere Rolle. Sie machen über ein Drittel des Energieverbrauchs im Gebäudesektor 

aus und bieten durch ihre Größe, Nutzung und technische Ausstattung ein enormes Potenzial zur Reduktion 

von CO₂-Emissionen und zur Steigerung der Energieeffizienz. Moderne NWG stellen aus Energiemanagement-

perspektive häufig komplexe Systeme dar, die beispielsweise Wärmepumpen, die Ladeinfrastruktur, Batte-

riespeicher und Photovoltaik (PV)-Anlagen umfassen. Eine iMSys-Infrastruktur ist für die flexible Steuerung 

dieser Anlagen notwendig. Um diese technischen Möglichkeiten optimal zu nutzen, können intelligente Ener-

giemanagementsysteme (EMS) zum Einsatz kommen, die auf Künstlicher Intelligenz (KI) basieren. Diese KI-

basierten Systeme bewältigen die Vielzahl an Datenpunkten, Steuergrößen und Bedingungen deutlich effizi-

enter als klassische, regelbasierte Ansätze und ermöglichen dadurch eine gezielte Optimierung des Energie-

einsatzes im Hinblick auf die Nutzung von dynamischen Stromtarifen. Digitalisierung, Flexibilisierung und die 

aktive Rolle der steuerbaren Verbraucheinrichtungen im Energiesystem sind dabei wichtige Rahmenbedin-

gungen, die diesen Wandel unterstützen. 

Das Projekt Start-up Energy Transition (SET) Hub bietet als zentrale Anlaufstelle für innovative Akteurinnen 

und Akteure aus der Energiewirtschaft eine Plattform zum Austausch sowie zur Vernetzung, Unterstützung 

und Erprobung neuer Lösungen. Insgesamt werden im SET Hub-Projekt vier Piloten mit verschiedenen 

Schwerpunkten zu iMSys umgesetzt. Der vierte Pilot zur Entwicklung und Erprobung eines KI-basierten Steu-

erungsalgorithmus für das Energiemanagement von NWG in Verbindung mit dem intelligenten Mess- und 

Steuerungssystem soll das Flexibilitätspotenzial von NWG untersuchen und die technische Steuerung der 

dezentralen SteuVE und Erzeugungsanlagen erproben. Die Ergebnisse des Pilotierungsprojekts werden im 

Rahmen dieses Berichts öffentlich zugänglich gemacht, um eine wichtige Voraussetzung für die markt- und 

netzdienliche Steuerung von Erzeugungsanlagen und Verbrauchseinrichtungen sowie für die Entwicklung 

und Umsetzung innovativer Geschäftsmodelle für NWG zu erschließen. 

Die inhaltliche Bearbeitung dieses Abschlussberichts des vierten Piloten im Projekt SET Hub erfolgte bis zum 

31.03.2025. Wir möchten Interessierten aus der Branche mit diesem Bericht eine Übersicht zu wesentlichen 

Aspekten der KI-basierten Steuerung von Flexibilitäten im NWG und wichtige Impulse zum Flexibilitätspoten-

zial von NWG geben. Wir wünschen viel Spaß beim Lesen! 

 

____________________________   ____________________________ 

Pia Dorfinger     Elias Schiafone 

Leiterin Start-up-Ökosystem   Experte Start-up-Ökosystem 

Deutsche Energie-Agentur GmbH (dena)  Deutsche Energie-Agentur GmbH (dena) 
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2 Einleitung 

Die Energiewende erfordert innovative Ansätze zur Flexibilisierung des Energieverbrauchs, insbesondere im 

Gebäudesektor. Aufgrund ihrer Heterogenität und des hohen Energiebedarfs bieten Nichtwohngebäude 

(NWG) ein erhebliches Potenzial für die automatisierte Energieoptimierung durch Energiemanagementsys-

teme (EMS) in Verbindung mit intelligenten Messsystem (iMSys). IMSys und ihre dazugehörigen Steuerungs-

einrichtungen, nachfolgend als iMSys+ bezeichnet, bilden als sichere Kommunikationsinfrastruktur die tech-

nologische Grundlage für die Übermittlung von Messwerten, Steuersignalen sowie neue Geschäftsmodelle 

und Mehrwertdienste. Die Entwicklung und der Einsatz von KI-basierten Optimierungsansätzen versprechen 

ein hohes Potenzial, insbesondere bei komplexen und übergreifenden Optimierungsfragestellungen, die von 

intelligenter Wärmeversorgung über das Laden von Elektrofahrzeugen am Arbeitsplatz bis hin zur Nutzung 

von Eigenstromerzeugung und Batteriespeichern reichen. 

Im Rahmen des SET Hub Pilots 4 entwickelt und erprobt das Fraunhofer-Institut für Energiewirtschaft und 

Energiesystemtechnik (IEE) gemeinsam mit den Projektpartnern Smartrplace GmbH und Teleseo GmbH ei-

nen KI-basierten Steuerungsalgorithmus für NWG. Dabei werden für die Einsatzoptimierung Reinforcement 

Learning (RL) sowie Daten aus der Gebäudeleittechnik (GLT) und des iMSys genutzt. Dieser Ansatz ermöglicht 

eine adaptive Gebäudesteuerung, die nicht nur den Energieverbrauch optimiert, sondern auch Preisschwan-

kungen am Energiemarkt ausnutzt, um einen kosteneffizienteren Betrieb zu erreichen. Durch die Kombina-

tion von Echtzeitdaten mit marktbasierten Preissignalen können steuerbare Verbrauchseinrichtungen 

(SteuVE) in Gebäuden flexibel auf volatile Rahmenbedingungen reagieren – beispielsweise durch Lastver-

schiebung in Zeiten niedriger Strompreise. 

Der vorliegende Bericht gibt einen Einblick in die Entwicklung und Funktionsweise des KI-basierten Steue-

rungsalgorithmus sowie die Einbindung von iMSys+. Zu Beginn werden in Kapitel 4 die Ausgangssituation 

und die regulatorischen Rahmenbedingungen dargestellt. Kapitel 5 beschreibt die im Projekt betrachteten 

Anwendungsfälle und das methodische Vorgehen. Kapitel 6 stellt die Gesamtsystemarchitektur vor, die einen 

Cloud-Edge-Ansatz nutzt, um iMSys+ mit steuerbaren Energieanlagen zu verknüpfen. Die technische Umset-

zung des Projekts – von der Installation der iMSys+-Infrastruktur am Pilotstandort über die Integration dyna-

mischer Tarife und netzorientierter Steuerung bis hin zu den technischen Schnittstellen zwischen den Syste-

men – wird in Kapitel 7 detailliert beschrieben. Im Anschluss folgt eine Einführung ins RL als ein Teilgebiet 

des maschinellen Lernens und dessen konkrete Umsetzung im Projekt. Kapitel 8 widmet sich den Labor- und 

Feldtests, bei denen die Funktionalität des Systems unter realen Bedingungen erprobt wurde. Die Ergebnisse 

dieser Tests werden in Kapitel 9 diskutiert und bewertet. Abschließend formuliert Kapitel 10 konkrete Hand-

lungsempfehlungen für Start-ups und andere Akteurinnen und Akteure im Bereich der intelligenten Gebäu-

detechnik sowie für regulatorische Institutionen. Ziel dieses Berichts ist es, das Potenzial von KI-basierten 

Steuerungsalgorithmen im Gebäudesektor unter Nutzung von iMSys+ aufzuzeigen und Anreize für weitere 

Innovationen zu schaffen. 

Ergänzt wird der Bericht durch eine wissenschaftliche Begleitstudie, die von adelphi consult und dem ITG 

Dresden durchgeführt wurde. Diese Studie analysiert die Flexibilisierungspotenziale von NWG in Deutsch-

land, identifiziert priorisierte NWG-Typen mit großem Potenzialen und untersucht limitierende Faktoren. Die 

Studie liefert wertvolle Erkenntnisse zur Skalierung der Projektergebnisse und formuliert Empfehlungen für 

Stakeholder der Energiewende auf Basis von Expertinnen- und Experteninterviews und einer Umfrage. 
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3 Über das Projekt – der SET Hub Pilot 

Dieses Kapitel legt die Grundlage für das Verständnis des übergeordneten Kontexts sowie der Zielsetzungen 

des Pilotprojekts und des Berichts. Zunächst wird der Hintergrund zum Pilotprojekt beschrieben, gefolgt von 

einer Darstellung der Ziele des Pilotprojekts. Anschließend werden die beteiligten Projektpartner vorgestellt, 

bevor die Zielsetzung, der Adressatenkreis und der Aufbau des Berichts erläutert werden. 

3.1 Über die dena und den SET Hub 

Der SET Hub bietet Unterstützung bei der Entwicklung und dem Vorantreiben innovativer Geschäftsmodelle 

und Lösungen für die Energiewende. Im Rahmen der SET Piloten werden Pilotprojekte durchgeführt, die eine 

technologieoffene, faire und skalierungsfähige Energiewende fördern. Es wird ein Erprobungs- und Umset-

zungsraum geboten, der die technologische Weiterentwicklung im Kontext der Digitalisierung der Energie-

wende zum Ziel hat. Der inhaltliche Fokus liegt auf iMSys(+) als Schlüsselelement für eine sichere Digitalisie-

rung der Energiewende.  

Neben dem hier vorgestellten vierten SET Piloten werden im Rahmen der SET Piloten drei weitere Piloten im 

Themenfeld iMSys(+) umgesetzt. Der erste SET Pilot fokussiert die Verbrauchsvisualisierung unter Einbezie-

hung der iMSys-Infrastruktur. Der zweite SET Pilot konzentriert sich auf die Steuerung von Anlagen der Elekt-

romobilität über die iMSys(+)-Infrastruktur zur Nutzung von Flexibilitäten. Im dritten SET Piloten wird ein 

Softwaretool für den iMSys(+)-Rollout entwickelt, mit der Messstellenbetreiber (MSB) effektiv die Planung 

des Rollouts durchführen können. 

3.2 Der SET Pilot 4 

Die Energiewende erfordert ein grundlegendes Umdenken im Energiesystem: Mit der zunehmenden Einspei-

sung fluktuierender erneuerbarer Energien und der Elektrifizierung der Sektoren Wärme und Mobilität wird 

Flexibilität auf der Verbraucherseite immer wichtiger. IMSys+ inklusive Smart-Meter-Gateways (SMGW) bilden 

die digitale Infrastruktur, um Stromangebot und -nachfrage effizienter zu koordinieren, die Netzstabilität zu 

erhöhen und neue Geschäftsmodelle zu ermöglichen. Besonderes Potenzial liegt dabei im Gebäudesektor, 

insbesondere bei NWG, die rund ein Drittel des Energieverbrauchs in diesem Bereich ausmachen. NWG bie-

ten durch ihre technische Ausstattung zahlreiche Möglichkeiten für intelligente Steuerung, etwa über Prä-

senzsensoren, Batteriespeicher und PV-Anlagen.  

KI-basierte Energiemanagementsysteme (KI-EMS) – insbesondere mit RL – können dabei komplexe Optimie-

rungsaufgaben übernehmen und flexibel auf dynamische Strompreise reagieren. Ab 2025 eröffnen ver-

pflichtende iMSys(+) und dynamische Tarife neue Chancen für preis- und netzorientiertes Lastmanagement 

in NWG. Das vorgestellte Pilotprojekt zeigt, wie durch den gezielten Einsatz der iMSys+-Infrastruktur, KI und 

dynamischer Preissignale ein aktiver Beitrag zur Dekarbonisierung und Digitalisierung des Gebäudesektors 

geleistet werden kann. Im Rahmen der Umsetzung des Pilotvorhabens erfolgte die preis- und netzorientierte 

Steuerung der angeschlossenen Anlagen über einen KI-basierten Steuerungsalgorithmus. Die Infrastruktur 

des iMSys+ wurde dabei in Kombination mit dem KI-gestützten Energiemanagement erprobt, um zu untersu-

chen, wie relevante Datenaustauschprozesse sicher innerhalb der iMSys+-Infrastruktur durchgeführt werden 

können. 
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Im Fokus des Pilotprojekts stehen folgende Ziele: 

 

Abbildung 1: Übersicht über die Ziele im Pilotprojekt (Quelle: Eigene Darstellung) 

3.3 Projektpartner 

Im Rahmen des Innovationsprojekts SET Hub arbeiten verschiedene Partner zusammen, um innovative Lö-

sungen im Bereich des intelligenten Energiemanagements für NWG zu entwickeln. Das zentrale Projektkon-

sortium bei diesem Pilotprojekt besteht aus dem Fraunhofer IEE, der Smartrplace GmbH und der Teleseo 

GmbH. Diese drei Partner bringen jeweils spezifische Kompetenzen in das Vorhaben ein und bilden das Kern-

team des Projekts. 

Das Fraunhofer IEE übernimmt die Gesamtkoordination des Projekts und stellt sein Institutsgebäude als Pi-

lotstandort zur Verfügung. Zudem ist das Institut für die Entwicklung und das Training der KI-Algorithmen 

verantwortlich. Die Smartrplace GmbH bringt ihre Expertise im Bereich der GLT ein und ist für die Integration 

der steuerbaren Anlagen sowie die Implementierung des KI-Agenten auf der Edge-Komponente zuständig. 

Die Teleseo GmbH stellt als wettbewerblicher MSB die notwendige Infrastruktur für iMSys(+) bereit und ge-

währleistet eine sichere Datenübertragung zwischen den Systemkomponenten. Ergänzt wird das Konsortium 

durch eine Kooperation mit der Marke Ostrom der Aplus Energy GmbH als Lieferant für dynamische Stromta-

rife. 

Zusätzlich zu den Konsortialpartnern fanden im Projekt gezielte Austauschformate mit relevanten Akteurin-

nen und Akteuren der Energiewirtschaft statt. Im September 2024 wurde ein Fachaustausch durchgeführt, an 

dem Netzbetreiber, Anbieter von GLT und EMS, Stromlieferanten, Hersteller von iMSys und Steuergeräten so-

wie Forschungseinrichtungen teilnahmen. Dieser Austausch ermöglichte eine außenstehende Marktspiege-

lung des Vorhabens und lieferte wertvolle Impulse für die weitere Projektgestaltung. 
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Abbildung 2: Konsortialpartner im SET Hub Piloten 4 (Quelle: Eigene Darstellung) 

Im Januar 2025 fanden vertiefende Expertinnen- und Expertengespräche mit verschiedenen Stakeholdern 

statt, darunter ein Verteilnetzbetreiber, ein Anbieter für Gebäudeautomation sowie ein innovativer Anbieter 

dynamischer Tarife. Dieser Stakeholder-Dialog unterstreicht den integrativen Ansatz des Pilotprojekts und 

stellt sicher, dass die entwickelten Lösungen praxisnah und marktrelevant sind. Gleichzeitig ermöglicht er 

dem Projektkonsortium, unterschiedliche Perspektiven zu berücksichtigen und potenzielle Herausforderun-

gen frühzeitig zu identifizieren und anzugehen. 

3.4 Zielsetzung und Adressatenkreis des Berichts 

Dieser Bericht hat das Ziel, die zentralen Treiber und Hemmnisse bei der Erprobung eines KI-EMS im NWG 

unter Einbeziehung von marktlichen und netzdienlichen Steuerungssignalen sowie der regulatorischen Rah-

menbedingungen darzustellen. Darüber hinaus soll der Bericht interessierten Akteurinnen und Akteuren ein 

vertieftes Verständnis für den Entwicklungsprozess und den Aufbau der KI-basierten Steuerung der Anlagen 

im NWG sowie dessen finale Ergebnisse vermitteln.  
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4 Operative und regulatorische 
Rahmenbedingungen 

Die Entwicklung und Implementierung eines KI-EMS für NWG unter Einbeziehung eines iMSys(+) erfordert ein 

tiefes Verständnis der regulatorischen Rahmenbedingungen und operativen Herausforderungen. Der Wandel 

hin zu dynamischen Strompreis-Modellen und netzorientierter Steuerung schafft neue Möglichkeiten, stellt 

aber auch Anforderungen an die Umsetzung solcher Systeme. Gleichzeitig bringen technologische Entwick-

lungen – insbesondere iMSys(+)– neue regulatorische Vorgaben mit sich, die den Betrieb und die Steuerung 

von Verbrauchsanlagen beeinflussen. 

Kapitel 4 beginnt mit einer Betrachtung der Ausgangssituation, die zentrale Rahmenbedingungen für das 

Projekt skizziert. Anschließend wird der regulatorische Rahmen detailliert analysiert, mit Fokus auf dynami-

sche Tarifstrukturen, SteuVE und spezifische Vorgaben für NWG. Auch aktuelle regulatorische Entwicklungen 

im Bereich Flexibilität werden beleuchtet. 

Auf dieser Grundlage werden die im Projekt untersuchten Anwendungsfälle (Use Cases) vorgestellt. Dabei 

stehen die KI-gestützte Einsatzoptimierung mit dynamischen Strompreisen und die Berücksichtigung eines 

Steuersignals durch einen Verteilnetzbetreiber nach §14a Energiewirtschaftsgesetz (EnWG) im Mittelpunkt. 

Abschließend wird das methodische Vorgehen im Pilotprojekt beschrieben, um die praktische Umsetzung im 

Projekt nachzuvollziehen. 

4.1 Ausgangssituation 

Die Energiewende stellt das Energiesystem vor tiefgreifende Herausforderungen. Mit dem steigenden Anteil 

erneuerbarer Energien (EE) wird die Stromerzeugung zunehmend von fluktuierenden Quellen wie Wind und 

Sonne geprägt. Gleichzeitig erfordert die Dekarbonisierung der Sektoren Mobilität und Wärme eine stärkere 

Elektrifizierung, etwa durch den Einsatz von Wärmepumpen und Elektrofahrzeugen. Diese Entwicklungen 

machen es notwendig, dass sich nicht mehr nur die Erzeugung an den Verbrauch anpasst, sondern auch der 

Verbrauch flexibel auf die volatile EE-Erzeugung reagiert. Verbraucherinnen und Verbraucher werden 

dadurch zu aktiven Akteurinnen und Akteuren im Energiesystem – sogenannten Flexumerinnen und Fle-

xumern. Als solche nehmen sie aktiv am Energiesystem teil, indem sie ihre elektrischen Flexibilitätsoptionen 

gezielt an Preissignalen ausrichten (AGORA / FFE 2023). 

Die Digitalisierung der Energiewende, insbesondere durch den Rollout von iMSys(+), ist eine essenzielle Vo-

raussetzung für das Erreichen der Klimaziele und die Transformation des Energiesystems. Die Kombination 

iMSys mit den dazugehörigen Steuerungseinrichtungen ermöglichen eine verbesserte Integration fluktuie-

render erneuerbarer Energien wie Solar und Wind in das Stromnetz, indem sie bei der Prognose und dem Ab-

gleich von Stromangebot und -nachfrage helfen. Dies führt zu einer effizienteren Netzsteuerung, erhöhter 

Netzstabilität und optimierter Energieeffizienz. Verbraucherinnen und Verbraucher profitieren von transpa-

renteren Einblicken in ihren Energieverbrauch, während dynamische Tarife und neue Geschäftsmodelle im 

Energiesektor gefördert werden. Zudem gewährleisten SMGWs eine sichere und standardisierte Datenüber-

tragung, was die Koordination der Verbrauchsseite und die Nutzung von Flexibilitätsoptionen unterstützt. 

IMSys(+) bilden somit die notwendige digitale Infrastruktur, um ein weitgehend klimaneutrales Energiesys-

tem zu realisieren. 
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Der Gebäudesektor spielt in dieser Transformation eine zentrale Rolle, da er etwa 35 % des Endenergiever-

brauchs und rund 30 % der CO₂-Emissionen in Deutschland verursacht (UBA 2024). Innerhalb dieses Sektors 

entfällt über ein Drittel des Energieverbrauchs auf NWG wie Bürogebäude, Krankenhäuser oder Schulen 

(BDI 2024). Aufgrund ihrer Größe und Komplexität bieten NWG erhebliche Potenziale zur Steigerung der Ener-

gieeffizienz und zur Reduktion von CO₂-Emissionen. Häufig verfügen sie über vielfältige technische Anlagen, 

die eine flexible Steuerung ermöglichen – von Wärmepumpen über Ladesäulen bis hin zu Batteriespeichern 

und PV-Anlagen (dena 2025b).  

Ein besonders dynamischer Wandel zeigt sich in der Beheizungsstruktur von NWG. Laut dem dena-Gebäu-

dereport 2025 wurde im Jahr 2023 beinahe jedes zweite genehmigte NWG mit einer Wärmepumpe als primä-

rem Energieträger geplant. Der Anteil der Wärmepumpen bei Neubauten hat sich zwischen 2019 und 2023 

verdoppelt und erreichte 48 %, während der Anteil von Gas im selben Zeitraum von 45 % auf 16 % zurückging 

(DENA 2025a). Diese Entwicklung unterstreicht den Paradigmenwechsel hin zu erneuerbaren Energien im Ge-

bäudesektor und zeigt das wachsende Potenzial für innovative Technologien wie intelligente Steuerungssys-

teme und -algorithmen. 

EMS spielen eine Schlüsselrolle bei der Hebung dieser Potenziale. Im Bereich der Haushalte haben sich 

Heim-Energiemanagementsysteme (HEMS) bereits etabliert, die zunehmend KI-basierte Ansätze für Progno-

sen, Anomalieerkennung1 oder Energieassistenten nutzen. Dies verdeutlicht auch die Analyse der Fachge-

meinschaft für effiziente Energieanwendung e.V. (HEA) (HEA 2024) der EMS, die die vielfältigen Funktionen 

und die Bedeutung dieser Systeme für die Steigerung der Energieeffizienz und die Integration erneuerbarer 

Energien unterstreicht. Diese Erfahrungen können auf NWG übertragen werden, wo jedoch die Komplexität 

der Gebäudetechnik ungleich höher ist. Neben den klassischen Anlagen kommen hier zusätzliche Steuergrö-

ßen wie Präsenzsensoren oder raumscharfe Temperaturregelungen hinzu. Die Vielzahl an Datenpunkten und 

Wechselwirkungen stellt regelbasierte Systeme vor erhebliche Herausforderungen. Hier kann KI ihre Stärken 

ausspielen, indem sie komplexe Optimierungsaufgaben übernimmt, die oft mit inhärenten Zielkonflikten ver-

bunden sind. 

RL, ein Teilgebiet des maschinellen Lernens, zeigt dabei besonderes Potenzial: RL-Agenten können durch 

selbstlernende Algorithmen dynamische Steuerstrategien entwickeln, ohne auf starre Regelwerke angewie-

sen zu sein. Studien belegen, dass RL-basierte Ansätze sowohl in Haushalten als auch in industriellen Anwen-

dungen deutliche Effizienzgewinne erzielen können, indem sie variable Strompreise ausnutzen, Lasten intel-

ligent verschieben und Speicher optimal nutzen (DREHER ET AL. 2022). So konnten beispielsweise in Simulatio-

nen mit Wärmepumpen bis zu 35 % der Stromkosten eingespart werden, während gleichzeitig der Energie-

verbrauch um bis zu 15 % reduziert wurde. Diese Flexibilität zeigt sich auch unter unsicheren Prognosebedin-

gungen, was RL zu einer robusten und zukunftsfähigen Technologie für das Energiemanagement macht 

(SCHMITZ ET AL. 2024). 

Bisher lag der Fokus in NWG vor allem auf Energieeffizienz und Betriebskostenreduktion, etwa durch Eigen-

verbrauchsoptimierung oder Spitzenlastmanagement. Die Einführung dynamischer Tarife gemäß §41a EnWG 

ab dem 1. Januar 2025 eröffnet jedoch neue Möglichkeiten: Diese Tarife bilden Preisschwankungen an den 

Strommärkten ab und schaffen Anreize für eine verbrauchsseitige Flexibilität. Während dynamische Tarife im 

Haushaltssektor bereits erste Anwendungen finden, sind sie im NWG-Bereich noch weitgehend unerforscht – 

ein Feld mit erheblichem Innovationspotenzial für Lösungsanbieter und Start-ups. 

 

1 Der Begriff „Anomalien“ beschreibt abweichende oder unerwartete Werte oder Muster in den erfassten Daten, die auf potenzielle Probleme, Fehler oder 

besondere Ereignisse hinweisen. 
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Dynamische Tarife als marktliche Preissignale sind zudem ein wichtiges Werkzeug zur Anpassung des Ver-

brauchs an die fluktuierende EE-Erzeugung und treiben die Digitalisierung des Energiesystems voran. Der 

verpflichtende Rollout von iMSys ab 2025 bzw. 2028 schafft hierfür die notwendige Infrastruktur. iMSys+ er-

möglichen nicht nur die sichere Übermittlung von Verbrauchsdaten, sondern auch das Empfangen und die 

Weiterleitung von Steuersignalen sowie neue Geschäftsmodelle wie Sub-Metering oder spartenübergrei-

fende Zählwerterfassung. 

Netzbetreiber sehen sich insbesondere mit hohen Erzeugungs- oder Verbrauchsspitzen konfrontiert, die zu 

Netzengpässen führen und netzdienliche Steuerungsmechanismen erfordern können. Dynamische Tarife als 

marktliche Preissignale können diese Netzsituation zusätzlich verschärfen, wenn viele Verbrauchsanlagen 

synchron auf Preisspitzen reagieren und durch Lastverschiebungen neue Spitzenlasten entstehen, da die 

marktlichen Preissignale nicht zwangsläufig die örtliche Stromverfügbarkeit widerspiegeln. Da NWG meist 

der Niederspannungsebene zugeordnet sind, können Netzbetreiber gemäß §14a EnWG auf deren SteuVE Ein-

fluss nehmen, um solche Lastspitzen zu adressieren. Die iMSys+-Infrastruktur ermöglicht hierbei sowohl die 

Übermittlung von Steuersignalen nach EnWG als auch die Abrechnung zeitvariabler Netzentgelte. Wie die 

Agora-Studie zu haushaltsnahen Flexibilitäten (Agora / FfE 2023) zeigt, sind netzorientierte Preissignale, die 

sich an der tatsächlichen Netzsituation orientieren, essenziell, um Lastspitzen gezielt zu vermeiden und Fle-

xibilität stromnetzdienlich einzusetzen. So können sowohl Netzengpässe reduziert als auch die Wirtschaft-

lichkeit für SteuVE gesteigert werden. 

Das vorliegende Pilotprojekt zielte darauf ab, mithilfe eines KI-EMS das strompreis- und netzorientierte Last-

management in NWG zu erproben. Es soll zeigen, wie moderne iMSys+-Infrastrukturen genutzt werden kön-

nen, um dynamische Tarife inklusive zeitvariabler Netzentgelte und netzorientierter Ansteuerungen nach 

§14a EnWG in innovative Geschäftsmodelle zu integrieren. Damit leistet das Projekt einen Beitrag zur Digitali-

sierung und Flexibilisierung des Energiesystems sowie zur Dekarbonisierung des Gebäudesektors. 

 

 

Wissenschaftliche Begleitstudie zum SET Hub Pilot 4 

Die wissenschaftliche Begleitstudie (DENA 2025b) untersuchte das Potenzial für die Anwendung von EMS in Verbin-

dung mit iMSys(+) in NWG. Die Studie hebt hervor, dass in den meisten NWG weder flächendeckende Gebäudeleit-

technik (GLT) noch iMSys(+)-Infrastrukturen implementiert sind. Dies eröffnet erhebliche Optimierungspotenziale: 

EMS in Kombination mit iMSys(+) können nicht nur Energiekosten senken und Klimaziele unterstützen, sondern auch 

Datenlücken sowohl auf Gebäude- als auch nationaler Ebene schließen. Neben betriebsinternen und preisorientier-

ten Optimierungen ermöglichen diese Technologien auch die Nutzung von Flexibilitätspotenzialen im Sinne der Netz-

dienlichkeit – etwa durch zeitliche Verschiebung von Lastgängen zur Stabilisierung des Stromnetzes. 

Besonders interessant sind sogenannte „low-hanging fruits“, also wenig technisierte Gebäude mit vorhersehbaren 

Lastgängen und klar definierten Betriebszeiten sowie Gebäudefunktionen mit geringem Einfluss auf zentrale Nutzun-

gen oder kritische Abläufe. Laut der wissenschaftlichen Begleitstudie bieten Gebäudetypen wie gewerbliche Büroge-

bäude, Handelsimmobilien, Hotels sowie Hallenbäder besonders großes Potenzial für den Einsatz solcher Technolo-

gien. 

Das vorliegende Pilotprojekt fokussiert bewusst Bürogebäude als repräsentativer und weit verbreiteter Gebäudetyp 

innerhalb des NWG-Sektors. Bürogebäude zeichnen sich durch regelmäßige Betriebszeiten, relativ stabile Lastprofile 

und eine hohe erwartete Akzeptanz aus, was sie zu idealen Testobjekten für KI-basierte Steuerungsansätze macht. 
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4.2 Regulatorischer Rahmen 

Der regulatorische Rahmen im Energiesektor stellt die entscheidende Grundlage für die Entwicklung und Im-

plementierung von KI-basierten Steuerungsalgorithmen NWG dar. Die folgenden Ausführungen präsentieren 

die aktuellen Rahmenbedingungen mit Stand März 2025, wobei besonderes Augenmerk auf iMSys+ gelegt 

wird. Zudem werden die relevanten gesetzlichen Anforderungen beschrieben, die für innovative Energiema-

nagementlösungen und Flexibilitätsoptionen im NWG maßgeblich sind. 

Das System von Vorgaben und Standards im Energiesektor ist mehrstufig und umfasst vier wesentliche Ebe-

nen: gesetzliche Vorgaben durch Bundesgesetze, Beschlüsse der Bundesnetzagentur (BNetzA), technische 

Richtlinien sowie Industriestandards, die beispielsweise durch das Forum Netztechnik/Netzbetrieb (FNN) 

oder die Deutsche Kommission Elektrotechnik (DKE) entwickelt werden. 

Die regulatorischen Rahmenbedingungen eröffnen vielfältige Geschäftsmodelle und schaffen wirtschaftliche 

Anreize – insbesondere durch die ab 2025 verpflichtende Einführung dynamischer Stromtarife durch Energie-

versorger (§41a EnWG) sowie durch die Weiterentwicklung der Netzentgeltsystematik (§14a EnWG). 

Dynamische Stromtarife sind marktbasierte Stromlieferprodukte, deren Arbeitspreis sich an den aktuellen 

Preisschwankungen der Strombörse orientiert und somit kurzfristig variiert. Zeitvariable Netzentgelte be-

zeichnen hingegen die vom jeweiligen örtlichen Verteilnetzbetreiber festgelegten, zeitlich gestaffelten Netz-

entgelte gemäß §14a EnWG (Modul 3), die sich an der erwarteten Netzbelastung orientieren und seit Ap-

ril 2025 verpflichtend für bestimmte Kundengruppen eingeführt werden. 

Während dynamische Stromtarife auf Preissignale des Energiemarkts reagieren und Anreize für eine markt-

basierte Flexibilisierung setzen, fördern zeitvariable Netzentgelte ein netzorientiertes Verbrauchsverhalten 

durch unterschiedliche Entgeltstufen für Hoch-, Standard- und Niedriglastzeiten. 

4.2.1 Dynamische Tarifstrukturen und netzorientierte Steuerung 

Dynamische Tarife nach §41a EnWG 

Mit der Verpflichtung zur Einführung dynamischer Stromtarife nach §41a EnWG ab 2025 müssen Energiever-

sorger Tarife anbieten, die Börsenpreisschwankungen in stündlicher oder 15-minütiger Granularität abbil-

den. Diese Regelung stellt eine wesentliche Grundlage für KI-Steuerungsalgorithmen dar, da sie auf transpa-

rente marktbasierte Preissignale reagieren und entsprechende Optimierungsstrategien entwickeln können. 

Diese Tarife ermöglichen eine marktgetriebene Lastverschiebung, indem sie Verbrauchsanreize in Zeiten ho-

her erneuerbarer Erzeugung oder niedriger Nachfrage setzen. Voraussetzung ist eine moderne Messeinrich-

tung (mME) mit SMGW, die eine viertelstündliche Messung ermöglicht, wenn der tatsächliche Verbrauch in 

granularen Zeitintervallen (z. B. 15 Minuten) als Grundlage der Bilanzierung dient.  

Im Unterschied zu einfachen zeitvariablen Tarifen mit fest definierten Preisstufen zeichnen sich dynamische 

Stromtarife durch eine direkte Kopplung an Börsenpreise und kurzfristige Preisänderungen aus. Während 

beispielsweise monatlich oder saisonal wechselnde Konstantpreise sowie langfristig definierte Stufenmo-

delle als zeitvariable Tarife gelten, bieten dynamische Tarife einen kontinuierlichen, intervallbasierten oder 

Echtzeit-Preisverlauf mit deutlich höherer Flexibilität.  
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Netzorientierte Steuerung von SteuVE nach §14a EnWG 

Besonders bedeutsam für die Entwicklung intelligenter Steuerungssysteme ist die Novelle des §14a EnWG, 

der die netzorientierte Steuerung von steuerbaren Verbrauchseinrichtungen neu regelt und seit Anfang 2024 

in Kraft ist. Diese Regelung ermöglicht es Verteilnetzbetreibern, bei akuter Netzüberlastung bestimmte Anla-

gen in ihrer Leistungsaufnahme zu begrenzen. Der primäre Zweck dieser Regelung besteht darin, den Ausbau 

der Elektromobilität und die Installation von Wärmepumpen trotz teilweise verzögertem Netzausbau voran-

zutreiben. Die Regelung betrifft neu installierte Anlagen wie Wärmepumpen, Wallboxen, Batteriespeicher 

und Klimaanlagen mit einer Leistung über 4,2 kW. Die Regelung des §14a EnWG gilt nur für Anlagen, die an 

das Stromnetz der allgemeinen Versorgung auf Netzebene 6 (Niederspannung hinter einem Transformator 

von Mittel- zu Niederspannung) oder Netzebene 5 (Niederspannung) angeschlossen sind. Bestandsanlagen 

mit Inbetriebnahme vor 2024 unterliegen dem neuen §14a EnWG nur, wenn bereits in der Vergangenheit eine 

individuelle Verpflichtung nach §14a EnWG vereinbart wurde. Für weitere Informationen sei auf Beschluss 

BK6-22-300 (BNETZA 2023a) verwiesen und ergänzend auf die Umsetzungshinweise des Kompetenzzentrums 

Energieeffizienz durch Digitalisierung (KEDi) der dena (KEDI 2024). Zudem haben der Bundesverband der 

Energie- und Wasserwirtschaft (BDEW) gemeinsam mit der HEA ein interaktives Tool zum §14a EnWG entwi-

ckelt, um sowohl die Relevanz als auch die finanziellen Vorteile für Betreiber steuerbarer Verbrauchseinrich-

tungen zu ermitteln (HEA 2024b). 

Die finanziellen Vorteile der Betreiberin bzw. des Betreibers der SteuVE hängen vom gewählten Modul zur 

Netzentgeltreduktion ab. Nach dem Beschluss BK8-22/010-A der BNetzA (BNETZA 2023b) können neben der 

pauschalen (Modul 1) sowie der prozentualen (Modul 2) Netzentgeltreduktion auch ergänzend zeitvariable 

Netzentgelte (Modul 3) gewählt werden. Das heißt, dass Kundinnen und Kunden mit SteuVE ab dem 

01.04.2025 zusätzlich zur pauschalen Vergütung nach Modul 1 zeitvariable Netzentgelte als weitere Kompo-

nente (Modul 3) zum Tarif ihres Lieferanten wählen können. Die Verteilnetzbetreiber müssen dafür verschie-

dene Preisstufen (Hochtarif, Niedrigtarif, Standardtarif) je Quartal festlegen. Diese preislichen Differenzierun-

gen bieten zusätzlich zu den marktlich orientierten, dynamischen Tarifen weitere Anreize für den Einsatz KI-

gestützter Steuerungsalgorithmen, um den Energieverbrauch zeitlich zu verschieben. 

Ergänzend ist an der Stelle darauf hinzuweisen, dass die Module 2 und 3 nur für Marktlokationen mit Ent-

nahme ohne registrierende Leistungsmessung (RLM) und einem Verbrauch von weniger als 100.000 kWh pro 

Jahr gelten. Bei einem Verbrauch von mehr als 100.000 kWh ist hingegen nur Modul 1 mit einer pauschalen 

Netzentgeltreduktion möglich. Weiterhin ist zu beachten, dass (halb-)öffentliche Ladesäulen gemäß §2 LSV 

Nr. 5 explizit vom §14a EnWG ausgenommen sind und somit nicht der netzorientierten Steuerung unterlie-

gen. 

Empfehlungen und Beschlüsse zur technischen Umsetzung von §14a EnWG 

Für die technische Implementierung der Steuerungsprozesse ist der sogenannte Universalbestellprozess von 

entscheidender Bedeutung, der durch den Beschluss BK6-22-12812 der BNetzA (BNETZA 2022) eingeführt 

wurde. Die Steuerung erfolgt dabei über die Systeme des MSB und wird ausgelöst durch den Netzbetreiber. 

U. a. ist die Möglichkeit der Festlegung von längerfristigen, vordefinierten Schaltzeiten oder Leistungskurven 

(z. B. für ein Kalenderjahr) per erweiterter, klassischer Marktkommunikation („langsame“ MaKo) oder ein Ap-

plication Programming Interface (API)-Webservice zur echtzeitnahen Ad-hoc-Vorgabe von §14a-Steuersigna-

len vorgesehen. Letztere ist in der Branche u. a. auch bekannt als BDEW-Web-API oder „schnelle MaKo“. Diese 
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Kommunikationsschnittstellen bilden die technische Grundlage des KI-EMS zum Empfang von Steuersigna-

len Dritter über die Infrastruktur der iMSys+ und ermöglicht den automatisierten Datenaustausch zwischen 

den beteiligten Akteurinnen und Akteuren. 

Weiterhin hat das Verband der Elektrotechnik Elektronik Informationstechnik e.V. (VDE) FNN im Auftrag der 

BNetzA im März 2025 bundeseinheitliche technische Empfehlungen für die massentaugliche Umsetzung der 

netzorientierten Steuerung veröffentlicht (VDE FNN 2025b). Diese definieren konkrete Anforderungen an 

Schnittstellen für Steuerbefehle und legen Kommunikationsprotokolle für steuerbare Energieanlagen (EE-

BUS) als Mindeststandard für digitale Schnittstellen fest. Zusätzlich wurden verbindliche Vorgaben für die 

Dokumentation von Steuerbefehlen sowie den Umgang mit Störungen und die Rücknahme von Steuerungs-

maßnahmen definiert. Diese Standardisierung ist essenziell für die Entwicklung skalierbarer KI-basierter 

Steuerungsalgorithmen, da sie eine einheitliche technische Basis für die Kommunikation zwischen den Sys-

temkomponenten schafft. 

4.2.2 Regulatorische Anforderungen an intelligente Mess- und Steuersysteme 

Beschleunigter Ausbau und Steuerungsrollout 

Die Novellierung des Messstellenbetriebsgesetzes (MsbG) vom 24. Februar 2025 hat einen deutlichen Fokus 

auf den beschleunigten Steuerungsrollout gelegt. Besonders relevant für die Entwicklung von KI-EMS ist die 

Einbaupflicht für Verbraucherinnen und Verbraucher mit einem Jahresstromverbrauch ab 6000 kWh oder 

vorhandenen §14a EnWG-Anlagen ab 2025. Für Großverbraucherinnen und -verbraucher mit einem Jah-

resstromverbrauch ab 100.000 kWh gilt die Verpflichtung erst ab 2028, ist jedoch bereits ab 2025 zulässig 

(§30 MsbG, §45 MsbG). Diese gestaffelte Einführung ermöglicht eine gezielte Entwicklung von Lösungen für 

verschiedene Verbrauchsgruppen. 

Eine bedeutende Änderung in der Novellierung ist, dass die Steuerung am Netzanschlusspunkt nun eine 

Standardleistung mit eigener Preisobergrenze für steuerbare Anlagen darstellt, während sie vorher als Zu-

satzleistung von den Kundinnen und Kunden zu beauftragen war (§34 MsbG). Der MSB muss die Steuerbar-

keit aller Anlagen ab 7 kW sowie §14a-Anlagen über iMSys+ am Netzanschlusspunkt sicherstellen, soweit dies 

wirtschaftlich vertretbar ist (§29 MsbG). Diese Regelung schafft eine flächendeckende Infrastruktur für intelli-

gente Steuerungssysteme, die als Grundlage für die Implementierung von KI-basierten Algorithmen dienen 

kann. 

Verpflichtende Datenübertragung über iMSys(+) 

Gemäß §19 Abs. 2 MsbG ist die Übertragung energiewirtschaftlich relevanter Daten verpflichtend über zertifi-

zierte iMSys(+) durchzuführen. Diese Anforderung betrifft alle abrechnungs-, bilanzierungs- oder netzrelevan-

ten Leistungen einschließlich der Mess- und Steuerprozesse im Rahmen von §14a EnWG. Die Einhaltung die-

ser Vorgabe stellt eine wichtige Rahmenbedingung für die Entwicklung von KI-basierten Steuerungsalgorith-

men dar, da sie die Architektur der Datenerfassung und -verarbeitung maßgeblich beeinflusst. 

BSI-Sicherheitsanforderungen 

Das Bundesamt für Sicherheit in der Informationstechnik (BSI) definiert in der Technischen Richtlinie (TR) 

03109 detaillierte technische Vorgaben für iMSys+ und deren sicheren Betrieb. Für KI-EMS sind insbesondere 

Teil 1 „funktionale Mindestanforderungen an das Smart-Meter-Gateway“ (BSI 2024a) und Teil 5 „sichere Kom-

munikation zwischen SMGW und angeschlossenen Geräten über den CLS-Proxy-Kanal“ (BSI 2024b) relevant. 
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Der eingesetzte CLS-Kommunikationsadapter2 zur Übermittlung von netzorientieren Steuersignalen muss 

vom BSI zertifiziert werden, was bei der Entwicklung von KI-Steuerungsalgorithmen als technische Randbe-

dingung berücksichtigt werden muss. Diese Sicherheitsanforderungen stellen sicher, dass die entwickelten 

Lösungen den hohen Standards für kritische Infrastrukturen entsprechen, verhindern jedoch aktuell u. a. die 

praxistaugliche Verwendung der CLS-Komponente als Edge-Device für dezentrale EMS-Anwendungen. Grund 

dafür ist die durch ein Software-Update notwendige und aufwendige Re-Zertifizierung.  

4.2.3 Gesetzliche Vorgaben für Nichtwohngebäude 

Monitoring-Pflicht und Gebäudeautomation 

Mit §71a des Gebäudeenergiegesetzes (GEG) wurde ab 2024 eine verbindliche Monitoring-Pflicht für große 

NWG eingeführt. Objekte mit Heizungs- oder Klimaanlagen über 290 kW Nennleistung müssen bis Ende 2024 

mit digitalen Gebäudeautomationssystemen ausgestattet sein. Diese Systeme müssen in der Lage sein, 

sämtliche Energieströme zu erfassen, zu analysieren und über standardisierte Protokolle zu kommunizieren. 

In der Gebäudeautomation haben sich BACnet auf der Managementebene und KNX auf der Feldebene als 

typische Protokollstandards etabliert. Diese gesetzliche Anforderung schafft eine wichtige infrastrukturelle 

Grundlage für den Einsatz von KI-EMS in NWG unter Einbeziehung der bestehenden GLT, da sie die notwen-

dige Sensorik und Kommunikationsinfrastruktur für eine intelligente Steuerung im Gebäude bietet. 

Erneuerbare Energieversorgung 

Gemäß § 71 GEG dürfen grundsätzlich neue Heizungsanlagen nur in Betrieb genommen werden, wenn min-

destens 65 % der Wärme aus erneuerbaren Energien bzw. unvermeidbarer Abwärme erzeugt werden. Diese 

Verpflichtung gilt sowohl für Neubauten als auch für Bestandsgebäude.  Das Ziel besteht darin, den Anteil 

fossiler Energieträger zu reduzieren und die Nutzung nachhaltiger Technologien, wie beispielsweise PV-Anla-

gen und Wärmepumpen, zu fördern. Die Bundesförderung für effiziente Gebäude (BEG) bietet zudem attrak-

tive Förderkonditionen für Wärmepumpen in NWG mit Zuschüssen im Bestand sowie für Mess-, Steuerungs- 

und Regelungstechnik. 

Ladeinfrastruktur in Nichtwohngebäuden 

Das Gebäude-Elektromobilitätsinfrastruktur-Gesetz (GEIG) regelt ab 2024 die verpflichtende Ausstattung von 

NWG mit Ladeinfrastruktur für Elektrofahrzeuge. Bei Neubauten mit mehr als 6 Stellplätzen muss jeder dritte 

Parkplatz mit Leitungsinfrastruktur vorbereitet (§7 GEIG) und mindestens ein Ladepunkt installiert werden. 

Für bestehende NWG mit über 20 Stellplätzen gilt ab 2025 die Pflicht zur Errichtung mindestens eines Lade-

punkts (§10 GEIG). Zudem bestehen Verpflichtungen zum Ladeinfrastrukturausbau bei größerer Renovierung 

(§9 GEIG). Diese gesetzlichen Vorgaben erhöhen die Verbreitung von Ladeinfrastruktur im NWG-Sektor und 

bieten zusätzliche Anwendungsfälle für KI-basierte Steuerungsalgorithmen, insbesondere im Hinblick auf die 

Integration von Ladevorgängen in ein optimiertes Gesamtenergiemanagement. 

 

2Kommunikationsadapter zum Aufbau eines sicheren und transparenten Kommunikationskanals (CLS-Proxy-Kanal) zur Übermittlung von u. a. Steuersigna-

len an Controllable Local Systems (CLS), d. h. steuerbare Energieanlagen. Im Markt u. a. bekannt als CLS-Edge-Computing-Device, CLS-Mehrwert-Modul 

oder FNN-Steuerbox mit digitalen und/oder analogen Schnittstellen 
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4.2.4 Aktuelle regulatorische Entwicklungen für Flexibilitätsoptionen 

Das „Solarspitzen-Gesetz“ zur Flexibilisierung des Stromnetzes ist seit dem 25. Februar 2025 in Kraft und ent-

hält u. a. wichtige Änderungen im Erneuerbare-Energien-Gesetz (EEG). Zu den zentralen Neuerungen gehört 

die Pflicht zur maximalen Wirkleistungsbegrenzung auf 60 % für EEG-Anlagen unter 100 kW, sofern diese 

nicht in Direktvermarktung und steuerbar sind (§9 EEG). Zudem entfällt die Förderung bei negativen Strom-

preisen bereits nach einer Viertelstunde (§51 EEG), was einen deutlichen Anreiz zur flexiblen Anpassung der 

Einspeise- und Verbrauchsprofile setzt. 

Besonders relevant für KI-EMS ist die Aufhebung des Ausschließlichkeitsprinzips für Speicher (§19 Abs. 3 und 

§85d EEG): EEG-geförderter Strom und Graustrom können nun gleichzeitig gespeichert und genutzt werden. 

Diese Regelung eröffnet neue Optimierungsmöglichkeiten für EMS, die PV-Anlagen und Speicher integrieren, 

da sie eine differenziertere Bewirtschaftung der verschiedenen Energieflüsse aus Eigenstromerzeugung und 

Netzbezug ermöglicht und zusätzliche Freiheitsgrade für die Optimierungsalgorithmen schafft. 

Weiterentwicklung der Netzentgeltsystematik 

Die aktuelle Netzentgeltsystematik nach §19 Abs. 2 Stromnetzentgeltverordnung (StromNEV), die Sonder-

netzentgelte für Industrie und Gewerbe für Bandlast oder atypische Netznutzung vorsieht, hat durch die zu-

nehmende Durchdringung erneuerbarer Energien an Effektivität eingebüßt und setzt teilweise kontraproduk-

tive Anreize. Diese Entwicklung erfordert eine grundlegende Neuausrichtung der Anreizsysteme, um den ver-

änderten Anforderungen eines von erneuerbaren Energien dominierten Energiesystems gerecht zu werden. 

Die BNetzA hat daher einen neuen Regulierungsansatz vorgeschlagen (BNETZA 2024), der stromintensive Un-

ternehmen dazu anregen soll, flexibel auf die aktuelle Erzeugungslage zu reagieren. Nach diesem Vorschlag 

sollen Unternehmen grundsätzlich privilegiert werden, wenn sie in Zeiten besonders niedriger Strompreise 

ihren Verbrauch im Vergleich zu ihrem individuellen Jahresdurchschnitt signifikant erhöhen und in Phasen 

mit besonders hohen Preisen ihren Verbrauch deutlich reduzieren. Die Regelung soll am 1. Januar 2026 in 

Kraft treten. Diese Entwicklung bietet neue wirtschaftliche Anreize für preisoptimierte KI-Steuerungsalgorith-

men in NWG, insbesondere für energieintensive gewerbliche und industrielle Anwendungen. 

Ergänzend dazu hat die Bundesnetzagentur im Mai 2025 das AGNES-Verfahren („Allgemeine Netzentgeltsys-

tematik Strom“) eingeleitet, um die Netzentgeltsystematik grundlegend zu reformieren. Ziel ist eine verursa-

chungsgerechtere, transparentere und flexiblere Verteilung der Netzkosten, die den Anforderungen der Ener-

giewende und der zunehmenden Dezentralisierung gerecht wird. Das Verfahren sieht vor, neue Anreize für 

netzdienliches und flexibles Verhalten zu schaffen und Fehlanreize im bisherigen System zu korrigieren. Die 

neuen Regelungen sollen ab 2029 gelten und werden aktuell im Rahmen eines breit angelegten Konsultati-

onsprozesses diskutiert (BNETZA 2025). 
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5 Anwendungsfälle und Vorgehen im Projekt 

Die Energiewende und die damit verbundene Transformation des Energiesystems von zentralen Kraftwerks-

strukturen zu digitalen dezentralen und vernetzten Anlagen bietet Marktakteurinnen und -akteuren zahlrei-

che Geschäftsoptionen. Insbesondere im NWG-Sektor ergeben sich vielfältige Anwendungsfälle für intelli-

gente, KI-basierte Steuerungsalgorithmen, um dezentrale Flexibilitäten wie Wärmepumpen, Batteriespeicher 

und Ladesäulen zu erschließen. Neben klassischen Use Cases rücken zunehmend markt- und netzorientierte 

Anwendungen in den Blickpunkt. 

Im NWG-Sektor haben sich drei zentrale klassische Anwendungsfälle etabliert: die Eigenverbrauchsoptimie-

rung, das Lastspitzenmanagement sowie die allgemeine Steigerung der Energieeffizienz. Bei der Eigenver-

brauchsoptimierung geht es primär um die effiziente Nutzung selbst erzeugten PV-Stroms. Durch intelligente 

Steuerung wird der Verbrauch möglichst in Zeiten hoher Eigenerzeugung verschoben, um den Autarkiegrad 

zu erhöhen und Stromkosten zu senken. Das Lastspitzenmanagement zielt darauf ab, Leistungsspitzen zu 

reduzieren, um die Kostenkomponente durch Leistungspreise zu minimieren. Dies ist nur für Gebäude mit 

RLM relevant. Die Steigerung der Energieeffizienz zielt auf eine Reduzierung des Energieverbrauchs und der 

damit verbundenen Kosten ab. Diese klassischen Anwendungsfälle werden jedoch nicht weiter betrachtet, 

da sie im NWG-Sektor bereits als State-of-the-Art gelten und kein Forschungs- und Entwicklungs-Pilotprojekt 

erfordern. 

Die zunehmende Volatilität der Stromerzeugung aus erneuerbaren Energien verstärkt die Relevanz von dyna-

mischen Preissignalen und netzorientierter Steuerung gemäß §14a EnWG. Diese ermöglichen sowohl eine 

marktbasierte Einsatzoptimierung als auch eine netzdienliche Lastanpassung in der Niederspannungsebene. 

Das Pilotprojekt fokussiert gezielt diese für NWG innovativen Anwendungsfälle, verstärkt durch die aktuellen 

regulatorischen und energiepolitischen Debatten und Entwicklungen (siehe Kapitel 4.2 Regulatorischer Rah-

men). Um die Übertragbarkeit der Erkenntnisse auf typische NWG wie Büros, Handelsimmobilien und Hotels 

ohne Produktionsprozesse zu sichern, wird bewusst ein Niederspannungsanschluss angenommen.3 

Das Pilotvorhaben konzentriert sich auf zwei vielversprechende Anwendungsfälle für Betreiberinnen und Be-

treiber von NWG sowie Netzbetreiber: (1) die wirtschaftliche Einsatzoptimierung anhand dynamischer 

Strompreise (vgl. Kapitel 5.1) und (2) die zusätzliche Berücksichtigung eines möglichen Steuersignals nach 

§14a EnWG (vgl. Kapitel 5.2). Diese beiden Anwendungsfälle haben hohe wirtschaftliche und netzdienliche 

Relevanz. Der Einsatz KI-gestützter Algorithmen ist dabei aus zwei Gründen sinnvoll: Erstens ermöglicht er 

die Bewältigung der Komplexität und der möglichen Zielkonflikte, die durch die Integration verschiedener 

flexibler Energieanlagen wie Wärmepumpen, Batteriespeicher und Ladesäulen entstehen. Zweitens können 

Machine-Learning-Verfahren die umfangreichen Datensätze und Steuermöglichkeiten der GLT optimal nut-

zen, um effiziente Steuerungsstrategien zu entwickeln. 

Neben den zwei vielversprechenden Anwendungsfällen der dynamischen Tarife und §14a EnWG unter Einbe-

ziehung der zeitvariablen Netzentgelte werden im Folgenden weitere potenzielle Anwendungsfälle für das 

Energiemanagement von NWG aufgezeigt. Diese Use Cases werden jedoch im Rahmen des Pilotprojekts nicht 

weiter vertieft, da sie entweder für den Kontext NWG bislang noch nicht ausreichend etabliert sind, spezifi-

sche Marktzugangshürden aufweisen oder sich aktuell noch in der Erprobungsphase befinden. 

 

3 Das untersuchte Pilotgebäude des Fraunhofer IEE verfügt aufgrund der stromintensiven Labornutzung abweichend über einen Mittelspannungsanschluss. 

Die wissenschaftliche Begleitstudie ordnet jedoch den überwiegenden Teil der relevanten NWG explizit der Niederspannungsebene zu. 
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Zu diesen weiteren relevanten Anwendungsfällen zählen insbesondere die Bereitstellung von Regelreserve 

sowie der Intraday-Handel. Die Erbringung von Regelreserve erfolgt aufgrund hoher technischer Anforderun-

gen (wie Präqualifikationsbedingungen und IT-Mindestanforderungen) meist über Aggregatoren oder Direkt-

vermarkter, die als Intermediäre die Markteintrittsbarrieren überwinden. Im Bereich des Intraday-Handels 

entwickeln sich ebenfalls vielversprechende Anwendungen, wobei auch hier Aggregatoren eine Schlüssel-

rolle spielen. Erste Produkte konzentrieren sich vor allem auf Smart Charging von Elektrofahrzeugen und die 

Nutzung von Batteriespeichern, mit der perspektivischen Möglichkeit, weitere flexible Assets wie Wärme-

pumpen zu integrieren. Innovative Lösungen wie das Virtuelle Kraftwerk von Ostrom (OSTROM 2025) oder der 

E-Kfz-Aggregator The Mobility House (THE MOBILITY HOUSE SOLUTIONS 2025) demonstrieren das Potenzial dieser 

Ansätze. Sie nutzen intelligente Steuerungssysteme, um Ladeinfrastruktur dynamisch an Intraday-Preis-

schwankungen anzupassen. Dies ermöglicht es, Arbitragepotenziale auf den Intraday-Märkten zu erschließen 

und für Endkunden zusätzliche Kostenvorteile gegenüber klassischen dynamischen Day-Ahead-Tarifen zu 

realisieren. 

5.1 KI-Einsatzoptimierung anhand dynamischer Strompreise 

Ziel des Pilotprojekts ist die betriebswirtschaftliche Optimierung steuerbarer Verbrauchseinrichtungen wie 

beispielsweise Wärmepumpen, E-Ladesäulen und PV-Anlagen durch den Einsatz eines KI-EMS. Dabei werden 

dynamische Preismodelle berücksichtigt, die sowohl aus den dynamischen Tarifen des Energieversorgers als 

auch aus den zeitvariablen Netzentgelten des Netzbetreibers bestehen. Die Kombination aus dynamischem 

Tarif und zeitvariablem Netzentgelt wird im Folgenden als dynamischer Strompreis bezeichnet und bildet die 

operative Größe, auf die das EMS bzw. der KI-Steuerungsalgorithmus zur Optimierung des Strombezugs rea-

giert. 

Zeitvariable Netzentgelte nach Modul 3 §14a EnWG ergänzen im Projekt die Dynamik auf der Preisseite um 

eine netzorientierte Komponente. Im Gegensatz zu fixen Netzentgelten orientieren sich diese an der zu er-

wartenden Netzbelastung und werden vom Netzbetreiber in verschiedene Tarifstufen eingeteilt. Die durch-

schnittlichen Höhen dieser Tarifstufen belaufen sich gegenwärtig (Stand März 2025) über alle Verteilnetzbe-

treiber gemittelt auf 2,6 ct/kWh für die Niedrigtarifzeit (NT), 8,7 ct/kWh für die Standardtarifzeit (ST) und 

12,5 ct/kWh für die Hochtarifzeit (HT) (INNOCHARGE & ENE'T 2025). Im Projekt selbst wurde sich der Tarifstufen 

der EAM Netz bedient (vgl. Kapitel 7.2.2) 

Zur Abrechnung von dynamischen Strompreisen sind im SMGW zwei Tarifanwendungsfälle (TAF) denkbar. Die 

TAF definieren als konfigurierbare Funktionen im SMGW den Umfang und die Art der Messwertübertragung. 

TAF 7 legt die viertelstündliche Erfassung von Zählerständen fest, wobei die Vor-Tages-Messwerte am Folge-

tag an den Lieferanten übermittelt werden. Im Gegensatz dazu bildet TAF 5 einen ereignisvariablen Tarif mit 

mehreren Tarifstufen ab, die basierend auf definierten Bedingungen oder Ereignissen aktiviert werden. Wäh-

rend TAF 7 bereits in der Technischen Richtlinie BSI-TR-03109-1 als Pflichtfunktion definiert ist, befindet sich 

TAF 5 noch in der Erprobungsphase (EMH METERING 2024). Eine entsprechende Standardisierung in der BSI-TR-

03109-1 für TAF 5 steht noch aus. Für die Feldtests im Projekt wurde im SMGW eine TAF 7-Konfiguration vor-

gesehen (vgl. Kapitel 7.2.2). 

Neben den dynamischen Strompreisen nutzt das KI-EMS Echtzeitdaten aus der GLT, Wetterprognosen, Last-

prognosen und PV-Erzeugungsdaten, um Betriebszeiten in preisgünstige Zeitfenster zu verschieben. Der Al-

gorithmus folgt dem Flexifficiency-Prinzip (ECOFYS 2016), das technische Freiheitsgrade, Nutzerbedarfe und 
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Marktpreise synchronisiert. So werden beispielsweise Ladevorgänge verschoben, sofern der Ladebedarf und 

die Fahrzeugverfügbarkeit dies zulassen.  

5.2 Berücksichtigung eines Steuersignals nach §14a EnWG 

Im zweiten Use Case wird das im ersten Anwendungsfall entwickelte Konzept um die Berücksichtigung von 

Steuersignalen gemäß §14a EnWG erweitert (vgl. Kapitel 8 Labor- und Feldtests). Der Begriff „§14a-Steuersig-

nal” bzw. „§14a-Signal“ umfasst dabei grundsätzlich die Dimmung von SteuVE. Er wird synonym mit dem 

Begriff der „netzorientierten Steuerung” verwendet. Dabei stehen den Netzbetreibern zwei Varianten zur Ver-

fügung. 

In der ersten Variante, der Ad-hoc-Steuerung, erfolgt die Steuerung bedarfsorientiert auf Basis von Echtzeit-

daten aus einem Niederspannungs-Cockpit beim Verteilnetzbetreiber. Die maximale Zeitspanne zwischen 

der Netzzustandsberechnung im Niederspannungs-Cockpit und der Übergabe des Steuerbefehls an den MSB 

beträgt 5 Minuten. Die Reduzierung der Leistung muss sowohl geeignet als auch objektiv sein, was bedeutet, 

dass sie nur im notwendigen Umfang hinsichtlich Intensität und Dauer erfolgen darf. Zudem sollte eine Redu-

zierung nur in Betracht gezogen werden, wenn andere Ad-hoc-Maßnahmen nicht ausreichend sind. Darüber 

hinaus ist sicherzustellen, dass die Umsetzung diskriminierungsfrei erfolgt, d. h. dass alle SteuVE innerhalb 

eines Netzbereichs gleichmäßig „gedimmt“ werden bzw. keine SteuVE gegenüber einer anderen bevorzugt 

wird. Für die Umsetzung der Ad-hoc-Steuerung wurde die standardisierte BDEW-Web-API vorgesehen, wobei 

das Fraunhofer IEE einen speziellen Proxy-Service entwickelte, der diese Schnittstelle emuliert und so reali-

tätsnahe Tests auch ohne Einbindung eines Netzbetreibers ermöglicht. 

Die zweite Variante, die sogenannte präventive Steuerung mit statischen Leistungshüllkurven, wird ange-

wendet, wenn eine netzorientierte Ad-hoc-Steuerung nicht möglich ist. Dieses Übergangsmodell ist bis zum 

31.12.2028 für einen Zeitraum von maximal 24 Monaten je Netzbereich befristet. Die präventive Steuerung 

basiert auf einer rechnerischen Engpassprognose, die historische Netzzustandsdaten berücksichtigt. Der ma-

ximale Wirkleistungsbezug wird präventiv festgelegt, wobei Zeit, Anzahl und Dauer des Steuereingriffs be-

rücksichtigt werden. Dies erfolgt in Form einer Leistungshüllkurve, die quartalsweise differenziert werden 

kann. 

Im Projekt orientieren sich die Zeiträume der statischen Leistungshüllkurve an den Hochlastzeitfenstern der 

zeitvariablen Netzentgelte (Modul 3, §14a EnWG) unter der Annahme, dass die Preise für Netzentgelte dann 

am höchsten sind, wenn eine Verschiebung des Verbrauchs aufgrund möglicher Netzengpässe seitens der 

Netzbetreiber gewünscht ist. Diese Annahme konnte mit Netzbetreibern4 validiert werden, wobei darauf hin-

gewiesen wurde, dass im Hochlastzeitfenster die einzelnen Anlagen nur für einen verkürzten Zeitraum von 

maximal 2 Stunden gedimmt werden dürfen. Ein längerer Zeitraum muss sich somit diskriminierungsfrei auf 

mehrere Anlagen verteilen. Zur Vereinfachung der Implementierung wurden die statischen Leistungshüllkur-

ven direkt im KI-EMS hinterlegt (vgl. Kapitel 7.2.3).  

In der Praxis erfolgt die Steuerung nach §14a EnWG für eine SteuVE durch den Netzbetreiber entweder prä-

ventiv oder ad hoc. Ein paralleler Einsatz beider Varianten ist nicht vorgesehen. Da die technischen Möglich-

keiten des Netzbetreibers der §14a-Steuersignale im Vorfeld für das KI-EMS nicht bekannt sind, wurde der KI-

Algorithmus jedoch auf beide Fälle trainiert. 

 

4 U. a. im Rahmen der projektbegleitenden Expertengespräche 
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5.3 Vorgehen im Pilotprojekt  

Das Pilotprojekt erstreckt sich über einen Zeitraum von neun Monaten (Juli 2024 bis März 2025) und verfolgt 

einen mehrstufigen Entwicklungsansatz, der Labor- und Feldversuche kombiniert. Wie in der Abbildung dar-

gestellt, gliedert sich das Projekt in drei Hauptphasen: Die Konzeptionierung im Sommer 2024, die Erpro-

bung des entwickelten Gesamtsystems im Herbst/Winter 2024 sowie die Aufbereitung und Übergabe der Er-

gebnisse im ersten Quartal 2025. 

 

Abbildung 3: Zeit- und Meilensteinplan des dena SET Hub Piloten 4 (Quelle: Eigene Darstellung) 

Aufgrund der hohen Komplexität und der kurzen Projektlaufzeit wurde ein agiles Projektmanagement in An-

lehnung an die SCRUM-Methode implementiert. Die Entwicklung erfolgt in dreiwöchigen Sprints mit regel-

mäßigen Review-, Retrospektive- und Planungsmeetings. Dieser iterative Ansatz ermöglicht es, flexibel auf 

Herausforderungen zu reagieren und kontinuierlich Anpassungen vorzunehmen. 

In der Konzeptionsphase wurden historische Betriebsdaten des Gebäudes und seiner energietechnischen 

Anlagen erfasst. Diese Datensätze bilden die Grundlage für das Training des KI-Algorithmus. Die Trainingsum-

gebung kombiniert reale und synthetische Daten, um verschiedene Betriebs- und Zukunftsszenarien zu simu-

lieren. Der Aufbau der technischen Infrastruktur folgt einer Cloud-Edge-Architektur: Das KI-Training erfolgt 

auf Hochleistungsrechnern in der Cloud, während der optimierte Algorithmus später dezentral auf einer 

Edge-Computing-Einheit im Gebäude betrieben wird. 

Die Anbindung der steuerbaren Anlagen erfolgt über standardisierte Schnittstellen der GLT. In der Erpro-

bungsphase werden drei Testzyklen durchlaufen: Zunächst erfolgt die Validierung in der virtuellen Laborum-

gebung mit emulierten Anlagen. Anschließend wird das System schrittweise an reale Gebäudekomponenten 

gekoppelt, beginnend mit den Ladesäulen. In der finalen Testphase erfolgt die vollständige Integration aller 

steuerbaren Verbrauchs- und Erzeugungsanlagen. 
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6 Überblick Gesamtsystemarchitektur 

Die Gesamtsystemarchitektur des Pilotprojekts integriert dezentrale Verbrauchs- und Erzeugungseinheiten 

über eine innovative Cloud-Edge-Infrastruktur, die sowohl marktliche als auch netzdienliche Signale verar-

beitet. Im Zentrum steht ein KI-EMS, das über standardisierte Protokolle mit der GLT und dem iMSys+ kom-

muniziert. 

Architekturkonzept 

Die Architektur folgt einem hierarchischen Aufbau mit drei Hauptebenen: 

• Die Cloud-Ebene umfasst die KI-Trainingsumgebung und Forecast-Services des Fraunhofer IEE so-

wie die Backend-Systeme des wettbewerblicher Messstellenbetreiber (wMSB). 

• Die Edge-Ebene besteht aus dem KI-EMS und einem CLS-Adapter, die gemäß BSI TR-03109-5 die lo-

kale Steuerungslogik umsetzen. 

• Die Feldebene integriert die steuerbaren Anlagen (Wärmepumpen, Ladesäulen, PV) über die GLT 

mittels standardisierter Protokolle. 

Die Architektur ermöglicht durch ihre modulare Struktur und die Verwendung etablierter Standards eine 

hohe Übertragbarkeit auf andere NWG. Die Integration des iMSys+ stellt dabei die sichere Übermittlung von 

Preis- und Steuersignalen sowie die Einhaltung regulatorischer Anforderungen sicher. Die zentralen Kompo-

nenten werden im Folgenden kurz eingeführt, die konkrete Ausgestaltung ist in Kapitel 6 „Technische Umset-

zung“ beschrieben. 

Gebäudeleittechnik: Als Herzstück der Gebäudeautomation konsolidiert die GLT sämtliche Datenpunkte 

und fungiert als zentrale Schnittstelle zwischen Nutzerinnen und Nutzern, Energieanlagen und KI-System. Sie 

ermöglicht ein umfassendes Monitoring und die Umsetzung der Steuerungsbefehle. 
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Abbildung 4: Die Gesamtsystemarchitektur des KI-EMS mit der GLT, iMSys+-Infrastruktur und den dazugehörigen Verantwortlichkeiten 

(Quelle: Eigene Darstellung) 

Dezentrale Energieanlagen: Integration folgender Energieanlagen über die GLT 

• Eine leistungsstarke 220-kW-Wärmepumpe mit einem Pufferspeicher von 10 m³ 

• Zwei Forschungs-Ladesäulen (je 22 kW) dienen der Erprobung netzdienlicher Ladekonzepte 

• Ein Software-Emulator simuliert die geplante PV-Anlage mit realitätsnahen Erzeugungsprofilen 

(24 kWp) 

KI-Infrastruktur: Die KI-Komponenten sind auf mehrere Ebenen verteilt: 

• Die Cloud-basierte Trainingsumgebung ermöglicht die risikofreie Entwicklung der Algorithmen 

• Ein Prognosedienst liefert Wärmebedarfs- und PV-Erzeugungsvorhersagen für eine vorausschau-

ende Betriebsführung 

• Die Edge-Komponente führt den trainierten KI-Agenten aus und optimiert den Anlagenbetrieb in 

Echtzeit 

Intelligentes Messsystem: Die iMSys+-Infrastruktur mit SMGWs, CLS-Adaptern und Backend-Systemen ge-

währleistet die sichere Kommunikation zwischen allen Komponenten und erfüllt dabei die regulatorischen 

Anforderungen. Die modulare Struktur und die Verwendung etablierter Standards ermöglichen eine hohe 

Übertragbarkeit dieser Architektur auf andere NWG, während das iMSys+ die sichere Integration in den Ener-

giemarkt sowie das Stromnetz sicherstellt. 
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Exkurs Intelligente Mess- und Steuersysteme 

Ein iMSys besteht aus einer modernen Messeinrichtung (mME, digitaler Zähler) in Kombination mit einem 

SMGW, dass die sichere Kommunikation und Datenübertragung von Messwerten gewährleistet. Der CLS-

Kommunikationsadapter (Controllable Local System) ermöglicht die standardisierte und sichere Anbin-

dung und Steuerung von steuerbaren Verbrauchseinrichtungen über das SMGW und den sogenannten 

CLS-Proxy-Kanal. CLS-Kommunikationsadapter treten am Markt in verschiedenen Formen auf, u. a. mit 

digitaler Schnittstelle (EEBUS) und/oder mit analoger Schnittstelle (Relais). Je nach Hersteller ist der CLS-

Kommunikationsadapter auch als FNN-Steuerbox, CLS-Mehrwertmodul oder CLS-Edge-Computing De-

vice bekannt. Die Kombination von intelligentem Messsystem und CLS-Kommunikationsadapter wird in 

diesem Bericht als iMSys+ bezeichnet. 

Externe Marktteilnehmer (EMT) sind Akteure wie Stromlieferanten oder Netzbetreiber. Aktive EMT können 

über den CLS-Proxy-Kanal Steuersignale und Tarifinformationen an die Endgeräte senden, während pas-

sive EMT lediglich Messdaten empfangen. 

Der aEMT-Adapter bzw. die Marktkommunikations-Engine verarbeitet die Kommunikation zwischen den 

externen Marktteilnehmern und dem iMSys+. Sie übersetzt Preis- und Steuersignale in das erforderliche 

Format für die Übertragung über den CLS-Proxy-Kanal. Das CLS-Management koordiniert die Steuerung 

und Verwaltung der angeschlossenen CLS-Geräte. Die Gateway-Administration (GWA) ist für die sichere 

Konfiguration und den Betrieb der SMGWs zuständig. Das Meter-Data-Management (MDM) speichert und 

verarbeitet die abrechnungsrelevanten Messwerte und stellt diese über standardisierte Schnittstellen den 

berechtigten Marktteilnehmern zur Verfügung. 
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7 Technische Umsetzung 

Das folgende Kapitel beschreibt die zentralen Elemente und Prozesse, die für die Implementierung des KI-

EMS entwickelt wurden. Dies umfasst im ersten Schritt die Integration der Energieanlagen in die GLT (Kapi-

tel 7.1), die Installation der iMSys+-Hardware (Kapitel 7.2.1), die sichere Integration dynamischer Strompreise 

und netzorientierter Steuersignale nach §14a EnWG sowie die dazugehörigen Erweiterungen der Backend-

Systeme des involvierten wMSB (vgl. Kapitel 7.2.2 und 7.2.3). Ein weiterer Schwerpunkt liegt auf der Entwick-

lung und Implementierung der KI-Algorithmen, einschließlich RL-Methoden, die in einer Trainingsumgebung 

entwickelt und für den Einsatz auf Edge-Devices optimiert wurden (Kapitel 7.3.). Die Umsetzung basiert auf 

einer Cloud-Edge-Architektur, die eine sichere Kommunikation zwischen den Systemkomponenten über das 

SMGW und den CLS-Kommunikationsadapter ermöglicht. Anhand dynamischer Preissignale und lokaler 

Stromerzeugung übernimmt der KI-Agent die optimierte Steuerung flexibler Energieanlagen. Die spezifische 

Infrastruktur mit den dazugehörigen technischen Schnittstellen des Pilotstandorts im Vergleich zu alternati-

ven Implementierungen wird im Unterkapitel 7.2.4 detailliert beschrieben. 

7.1 Pilotstandort 

Das Kapitel beschreibt die technische Infrastruktur und Systemintegration am Pilotstandort des Fraunhofer 

IEE in Kassel. Wie in der Abbildung dargestellt, umfasst die Energieversorgungsstruktur des Gebäudes meh-

rere steuerbare Komponenten, die über die GLT zentral überwacht und gesteuert werden: eine Wärmepumpe 

mit Pufferspeicher, Ladesäulen für Elektrofahrzeuge sowie eine geplante PV-Anlage. Die iMSys-Hardware plus 

Steuereinrichtung sowie das KI-EMS-Edge-Device sind dabei in der Heizzentrale neben der Wärmepumpe in-

stalliert. Die GLT von Siemens und Smartrplace fungiert als zentrales Nervensystem und integriert die ver-

schiedenen Automationssysteme. Sie stellt die Schnittstelle zwischen den Energieanlagen und dem KI-Agen-

ten dar. Die beiden F&E-Ladesäulen wurden im Projekt modernisiert und über eine Virtual Private Network 

(VPN)-Verbindung in die GLT eingebunden. Das Herzstück der Wärmeversorgung bildet eine Viessmann-Wär-

mepumpe mit Pufferspeicher, ergänzt durch Gasthermen für Spitzenlasten. Zur Erprobung und Validierung 

der KI-Steuerungsalgorithmen kommt ergänzend das virtuelle Labor als Simulationsumgebung zum Einsatz. 

Diese Software-basierte Testumgebung ermöglicht es, das Verhalten der Ladesäulen und der geplanten PV-

Anlage zu emulieren und die Steuerungsstrategien unter realitätsnahen Bedingungen zu erproben, bevor sie 

im realen Gebäude implementiert werden. 
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Abbildung 5: Gesamtarchitektur der Umsetzung im finalen Ausbaustadium (Quelle: Eigene Abbildung) 

7.1.1 Gebäudeleittechnik 

Die GLT von Smartrplace fungiert als zentrale Steuer- und Überwachungseinheit des Pilotgebäudes und inte-

griert zwei wesentliche Automationssysteme: Das BACnet-System für Heizung, Lüftung und Klima (HLK) so-

wie das KNX-System für Beleuchtung und Verschattung. Die GLT basiert auf dem Open-Source-Betriebssys-

tem OGEMA und ermöglicht ein übergreifendes Monitoring aller Messdaten aus beiden Bereichen der Gebäu-

deautomation. 

Im Rahmen des Pilotprojekts wurden für das KI-EMS ausschließlich ausgewählte Datenpunkte aus der GLT 

genutzt. Konkret handelte es sich um die Soll-Innentemperatur, die Ist-Innentemperatur sowie die Außen-

temperatur, die jeweils über die GLT erfasst und dem KI-Algorithmus bereitgestellt wurden. Zusätzlich wurde 

die Vorlauftemperatur im Pufferspeicher als weiterer zentraler Parameter berücksichtigt. Weitere theoretisch 

relevante Datenquellen wie beispielsweise Anwesenheitssensoren waren im Systemkonzept zwar vorgese-

hen, kamen im praktischen Betrieb des Piloten jedoch nicht zum Einsatz. 

Die GLT fungierte darüber hinaus als zentrale Kommunikationsschnittstelle zwischen dem KI-Agenten und 

den steuerbaren Energieanlagen. Über eine bidirektionale digitale Schnittstelle konnten sowohl Messdaten 

als auch Steuerbefehle ausgetauscht werden. Die Erfassung der elektrischen Wirkleistung der Wärmepumpe 

erfolgte über die Home Area Network (HAN)-Schnittstelle des SMGW und wurde in die GLT integriert. Bei die-

ser Schnittstelle handelt es sich um eine herstellerindividuelle, nicht standardisierte Schnittstelle, die beim 

eigebauten SMGW vorlag. Dies ermöglichte eine kontinuierliche Überwachung des Stromverbrauchs der Wär-

mepumpe in Echtzeit. In umgekehrter Richtung empfing die GLT Steueranweisungen vom KI-Agenten und 

setzte diese in konkrete Sollwertbefehle für die angebundenen Anlagen um. Die Kommunikation mit den ver-

schiedenen technischen Komponenten erfolgte dabei über gängige Protokolle wie das Open Charge Point 

Protocol (OCPP) für die Ladesäulen und Modbus TCP für den PV-Emulator. 

Eine webbasierte Nutzeroberfläche der GLT ermöglicht die grafische Auswertung der Testläufe und stellt 

Echtzeitdaten sowie historische Verläufe übersichtlich dar. Diese Visualisierung ist besonders wichtig für die 

Validierung der KI-Steuerungsstrategien und die Dokumentation der Projektergebnisse. 
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7.1.2 Ladesäulen 

Der Pilotstandort verfügt über zwei Forschungs- und Entwicklungs-Ladestationen (F&E) mit jeweils 22 kW 

Ladeleistung, die im Rahmen des Projekts modernisiert wurden. Bei der Auswahl der neuen Wallboxen ste-

hen insbesondere die Konnektivität und Zukunftsfähigkeit im Fokus. Die Ladestationen verfügen über um-

fangreiche Kommunikationsschnittstellen (OCPP, REST-API, Modbus-TCP und/oder EEBUS) sowie Kompatibi-

lität mit verschiedenen EMS. Aufgrund der exponierten Lage der Ladesäulen wurde für die Anbindung an die 

GLT eine VPN-Verbindung über mobile Daten (LTE-Router) realisiert, da die Verlegung eines Netzwerkkabels 

wirtschaftlich nicht darstellbar war. 

Der institutseigene Parkplatz mit 26 Ladestationen (22 kW) und einer Schnellladesäule wurde bewusst nicht 

in das Projekt einbezogen, da diese Infrastruktur zentral über ein anderes Fraunhofer-Institut und einen se-

paraten Energieversorger betrieben wird und eine Kopplung mit der GLT am Institut als unrealistisch einge-

stuft worden ist. 

7.1.3 Wärmepumpe 

Die Wärmeversorgung des Pilotstandorts basiert auf einer Viessmann-Wärmepumpe mit einer thermischen 

Gesamtleistung von 220 kW, die über zwei separat schaltbare Verdichterstufen (je 110 kW) verfügt. Ein 10 m³ 

großer Wärmespeicher dient als thermischer Puffer und ermöglicht die zeitliche Entkopplung von Wärmeer-

zeugung und -verbrauch. Für Spitzenlasten stehen sechs kaskadierte Gasthermen mit einer Gesamtleistung 

von 600 kW zur Verfügung. 

Eine Besonderheit des Systems ist die Integration eines Eisspeichers als innovative Umgebungswärmequelle 

für die Wärmepumpe – vergleichbar mit dem Erdreich bei einer Erdwärmepumpe. Das Rechenzentrum liefert 

mit seiner Abwärme thermische Energie zur Regeneration des Eisspeichers. Sofern dort keine Wärmeab-

nahme möglich ist, wird dieses über einen separaten Kreislauf mit Rückkühlern (260 kW) und einem 2 m³ 

großen Kältepufferspeicher gekühlt. Im Rahmen des Projekts und im Sinne der Übertragbarkeit liegt der Fo-

kus jedoch ausschließlich auf der Optimierung der Wärmepumpe in Kombination mit dem Pufferspeicher 

und den Spitzenlastthermen. 
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Abbildung 6: Leistungszahl der Wärmepumpe (Coefficient of Performance, COP) in Abhängigkeit der Vorlauftemperatur (Quelle: Eigene 

Darstellung)5  

Die Ansteuerung der Wärmepumpe erfolgt indirekt über zwei Stellhebel: die Anpassung der Soll-Vorlauftem-

peratur des Pufferspeichers oder die Modifikation der Soll-Raumtemperaturen. Eine zentrale Herausforde-

rung stellen die häufigen Taktvorgänge der zweistufigen Wärmepumpe dar. Um diese zu reduzieren, wurden 

zwei Strategien entwickelt: 

1. Erhöhung der Vorlauftemperatur in Niedrigpreisphasen, was jedoch einen größeren Temperaturhub 

und damit eine Verschlechterung der Leistungszahl bzw. des Coefficient of Performance (COP) zur 

Folge hat (vgl. Abbildung 6) 

2. Optimierung der Aufheizzeiten basierend auf Wärmebedarfsprognosen 

Der KI-Agent muss in seiner Optimierungsstrategie verschiedene Faktoren gegeneinander abwägen: Er soll 

die Anzahl der Schaltvorgänge minimieren, um die Lebensdauer der Komponenten zu verlängern, während 

er gleichzeitig Effizienzverluste und Betriebskosten berücksichtigt. Dies geschieht unter Berücksichtigung 

dynamischer Tarife und zeitvariabler Netzentgelte. 

7.1.4 Virtuelles Labor 

Das virtuelle Labor des Fraunhofer IEE als Simulationsumgebung dient als Software-basierte Testumgebung 

für die Erprobung des KI-Agenten unter realitätsnahen Bedingungen. Im Gegensatz zur Trainingsumgebung, 

die primär dem Training des neuronalen Netzes dient, emuliert das virtuelle Labor das physikalische Verhal-

ten realer Energieanlagen in Echtzeit. Die Emulatoren stellen dabei sowohl Messwerte als auch die Möglich-

keit zur Ansteuerung über standardisierte Modbus TCP/IP-Schnittstellen bereit. 

 

5 Die Leistungszahl (COP) beschreibt die Effizienz einer Wärmepumpe: Bei einer Vorlauftemperatur von 45 °C erzeugt die Wärmepumpe für jede Einheit 

elektrischer Energie, die sie verbraucht, drei Einheiten Wärmeenergie, was bedeutet, dass sie mit einem Verhältnis von 3:1 arbeitet. 
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Die Emulatoren werden über die Modbus-Schnittstelle nahtlos in die bestehende GLT integriert, wodurch sie 

aus Sicht des KI-Agenten wie reale Anlagen erscheinen. Dies ermöglicht insbesondere bei den Ladesäu-

lenemulatoren realitätsnahe Tests der Steuerungsalgorithmen, ohne dass physische E-Fahrzeuge bewegt 

oder angeschlossen werden müssen. Die Emulatoren bilden dabei das komplette Ladeverhalten inklusive 

Ankunfts- und Abfahrtszeiten sowie Ladebedarfe basierend auf definierten Nutzerinnen- und Nutzerprofilen 

ab. 

Neben den Ladesäulenemulatoren wurde das virtuelle Labor um einen Emulator für PV-Anlagen (PV-Anla-

gen-Emulator) erweitert, der die geplante reale PV-Anlage des Instituts simuliert. Die ursprünglich für die In-

stallation vorgesehene Leistung von 280 kWp6 wurde jedoch auf 24 kWp reduziert, um die Übertragbarkeit 

auf andere Standorte von NWG zu gewährleisten. Dieser Emulator ermöglicht es, die Eigenstromoptimierung 

bereits vor der Installation der physischen Anlage zu testen. Perspektivisch ist zudem die Integration eines 

Wärmepumpen-Emulators nach Projektabschluss vorgesehen, um das thermische Verhalten des Gebäudes 

noch präziser abzubilden. Die modulare Architektur des virtuellen Labors erlaubt eine flexible Kombination 

aus realen und emulierten Anlagen, wodurch verschiedene Szenarien und Randbedingungen systematisch 

getestet werden können. 

7.2 Mess- und Steuerungsinfrastruktur 

Das iMSys+ bildet die technologische Grundlage für eine datengestützte Steuerung und Optimierung des 

Energieverbrauchs im Pilotgebäude. Es besteht aus einer Kombination von Mess-, Kommunikations- und 

Steuerungstechnologien, die eine sichere und standardisierte Erfassung sowie Übertragung von energiewirt-

schaftlich relevanten Daten und Steuervorgängen ermöglichen. Zentraler Bestandteil dieser Infrastruktur ist 

das SMGW sowie die dazugehörige Steuereinrichtung, mithilfe derer eine bidirektionale Kommunikation zwi-

schen den Messstellen, dem Edge-Device und externen Marktakteuren gewährleistet wird. Die nachfolgenden 

Abschnitte erläutern die technischen Komponenten sowie die Integration dynamischer Strompreise und 

netzorientierter Steuerungsmechanismen im Detail. 

7.2.1 Messkonzept und Hardware-Installation 

Die Anzahl und Position der energiewirtschaftlich relevanten Messstellen – sogenannte Messlokationen – 

werden im Messkonzept zwischen Anschlussnutzerinnen bzw. -nutzern und Netzbetreiber abgestimmt. Eine 

Messlokation bezeichnet den Ort, an dem Energie physikalisch gemessen wird, meist durch einen Stromzäh-

ler, und umfasst alle technischen Einrichtungen zur Erfassung und Übermittlung der Messwerte. Aus den an 

den Messlokationen erfassten Messwerten werden Zeitreihen abgeleitet, die als Marktlokationen bezeichnet 

werden. Eine Marktlokation steht für den bilanziellen Ort, an dem Energie erzeugt oder verbraucht und damit 

kaufmännisch abgerechnet wird; sie ist ein rein abrechnungstechnisches Konstrukt, das die Zuordnung von 

Energiemengen zu Marktprozessen ermöglicht. Das Messkonzept beinhaltet einen Stromlinienplan, der die 

Positionen der Messstellen grafisch darstellt, sowie die Berechnungsformeln, nach denen die Messwerte den 

jeweiligen Marktlokationen zugeordnet werden. Die Festlegung der konkreten Standorte der Messstellen ob-

liegt dem Netzbetreiber. 

 

6 Die PV-Anlage nutzt neben der Dachfläche des Institutsgebäudes und der Labore auch die dahinterliegende Freifläche. 
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Für die Pilottests wurde das §14a EnWG Modul 3 mit zeitvariablen Netzentgelten gewählt. Der Strombezug 

der gesteuerten Verbrauchseinrichtungen muss mit einem iMSys erfasst und über eine Marktlokation an den 

Lieferanten übermittelt werden. 

Diese Anforderungen wurden gemäß Abbildung 7 im Messkonzept umgesetzt. Die räumliche Trennung von 

Wärmepumpe und Ladesäulen erforderte die Einrichtung separater Messstellen. Zusätzlich ist der Einsatzbe-

reich des KI-gestützten EMS-Edge-Devices im Messkonzept verzeichnet. 

 

Abbildung 7: Messkonzept am Fraunhofer IEE-Gebäude für die KI-EMS-Edge-Device-Pilotierung. Erläuterungen zu den Abkürzungen: 

ZWP – Zähler der Wärmepumpe, ZLS – Zähler Ladesäulen, HAK – Hauptanschlusskasten (Quelle: Eigene Abbildung)  

 

Im Zählerschrank der Heizzentrale, der sich in unmittelbarer Nähe der Wärmepumpe des Pilotgebäudes be-

findet, wurde eine komplexe Informations- und Kommunikations-Technologie-Infrastruktur (IKT-Infrastruk-

tur) installiert. Im Zentrum dieser Infrastruktur steht das SMGW der Firma EMH metering. Dieses kommuni-

ziert an der WAN-Schnittstelle über eine abgesetzte Mobilfunkantenne per LTE mit den Backend-Systemen 

des wMSB Teleseo. An die CLS-Schnittstelle des SMGW ist ein CLS-Kommunikationsadapter der EFR GmbH 

angeschlossen, der die Anbindung an das Edge-Computing-Device herstellt, auf dem der KI-basierte Steue-

rungsalgorithmus ausgeführt wird. 

Zur genauen Erfassung der von der Wärmepumpe bezogenen elektrischen Wirkarbeit wurden Stromwandler 

an den drei Phasenleitern installiert. Diese messen die Ströme, die dann in einem geeichten Wandlerzähler 

von Iskraemeco erfasst werden. Die Datenübertragung erfolgt über die standardisierten Local Metrological 

Network (LMN)-Schnittstelle zum SMGW, wobei der Wandlerfaktor für die Umrechnung der Rohsignale in den 

nachgeschalteten Systemen berücksichtigt wird. Das Edge-Device liest über die HAN-Schnittstelle des SMGW 

die Zahlenwerte aus dem Wandlerzähler in Echtzeit aus. Diese werden im Edge-Device mit dem Wandlerfak-

tor korrigiert und für die Echtzeitoptimierung verwendet.  

Parallel dazu wurde im Anschlusskasten der beiden F&E-Ladesäulen je ein direkt messender Stromzähler in 

Hutschienenausführung von EMH metering zur Erfassung der aufgenommenen elektrischen Wirkarbeit pro 
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Ladesäule installiert. Die Stromzähler sind zur Fernauslesung über den Local Metrological Network 

 (LMN)-Bus an ein im Anschlusskasten installiertes SMGW von EMH metering angeschlossen und bilden somit 

jeweils ein iMSys. Das SMGW kommuniziert ebenfalls über eine Mobilfunkverbindung mit den Backend-Syste-

men des wMSB im Projekt. Hierzu ist am SMGW eine Mobilfunkantenne angeschlossen worden, die zur Erzie-

lung der erforderlichen Signalstärke auf der Oberseite des Anschlusskastens montiert wurde. 

Weiterhin wurde im Anschlusskasten ein industrietauglicher LTE-Router mit VPN-Funktionalität installiert. 

Dieser Router ermöglicht eine sichere Übertragung der Messdaten an die GLT, da vor Ort keine kabelgebun-

dene Ethernet Verbindung zur Verfügung steht. 

 

Abbildung 8: Mess- und Steuerplatz im Schaltschrank der Heizzentrale am Fraunhofer IEE (Quelle: Eigene Abbildung) 
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7.2.2 Integration der dynamischen Strompreise 

Heutige Prosumer-Layouts mit EMS und dynamischen Strompreisen sehen die Bereitstellung der Tarifinfor-

mationen im EMS über eine Webschnittstelle zwischen EMS und Lieferant vor, wobei diese Webschnittstelle 

des Lieferanten meist proprietär ist. Im Rahmen des Projekts wurde ein Ansatz zur Übertragung der Tarifin-

formationen entwickelt, der die sichere Infrastruktur der iMSys sowie die Backend-Systeme des wMSB nutzt. 

Zunächst werden die Tarifinformationen vom Lieferanten (1) an den MSB übermittelt (2) und dann über den 

CLS-Kommunikationsadapter an das EMS weitergegeben (3). Dieser Übermittlungsweg ist über die Mako 

massentauglich und interoperabel ausgestaltbar. Somit sind Eigentümerinnen und Eigentümer eines EMS bei 

Exkurs Schnittstellen des Smart-Meter-Gateways (SMGW) 

Das Smart Meter Gateway (SMGW) verfügt über mehrere Schnittstellen, die eine sichere und effiziente Kom-

munikation zwischen verschiedenen Komponenten des intelligenten Messsystems ermöglichen.  

Die HAN-Schnittstelle (Home Area Network) verbindet das SMGW mit dem Heimnetz des Verbrauchers und 

ist in zwei Bereiche unterteilt: HAN-CON und HAN-CLS. Die HAN-CON-Schnittstelle ermöglicht es Service-

technikern und Servicetechnikerinnen, wichtige Informationen über den Systemzustand des SMGW abzu-

rufen, und bietet Verbrauchern vor Ort die Möglichkeit, ihre Verbrauchs- und Einspeisewerte einzusehen. 

Dazu wurde im Dezember 2024 vom BSI eine einheitliche Web-Schnittstelle definiert (BSI 2024c). Die HAN-

CLS-Schnittstelle (Controllable Local System) dient der Kommunikation mit steuerbaren Geräten wie intel-

ligenten Haushaltsgeräten, Ladestationen für Elektrofahrzeuge oder PV-Anlagen. 

Die LMN-Schnittstelle (Local Metrological Network) verbindet das SMGW mit den angeschlossenen Zählern 

für Strom, Gas, Wasser und Wärme. Diese Technologie ermöglicht 1:n-Installationen, bei denen mehrere 

Zähler mit einem einzigen SMGW verbunden werden können, was besonders in Mehrfamilienhäusern oder 

gewerblichen Objekten von Vorteil ist.  

Die WAN-Schnittstelle (Wide Area Network) stellt die Verbindung des SMGW zur Außenwelt her. Über diese 

Schnittstelle werden Daten mit externen Marktteilnehmern und dem SMGW-Administrator ausgetauscht. 

Die Kommunikation über das WAN erfolgt verschlüsselt und unter strengen Sicherheitsauflagen, um die 

Integrität und Vertraulichkeit der übertragenen Daten zu gewährleisten (BSI 2025b). 

  

Abbildung 9: Überblick über die verschiedenen Kommunikationsschnittstellen des SMGW (BSI 2025b). 



   

 

 35 

der Wahl des Lieferanten für einen dynamischen Tarif nicht mehr auf die Stromlieferanten beschränkt, die 

von seinem EMS unterstützt werden. Weiterhin ist die Einführung von zeitvariablen Netzentgelten nach Mo-

dul 3 des §14a EnWG ab April 2025 aus KI-Agenten-Sicht mitberücksichtigt. Dieser könnte zukünftig als zu-

sätzlicher Bestandteil eines dynamischen Tarifs vom Lieferanten mit übertragen werden. Für den KI-Agenten 

stellen die zeitvariablen Netzentgelte neben dem dynamischen Stromtarif des Lieferanten die wesentliche 

operative Eingangsgröße dar, die in die Optimierungsentscheidung einfließt. 

 

Abbildung 10: Beispielhafter Tagesverlauf des dynamischen Strompreises, gebildet aus dem zeitvariablen Netzentgelt der EAM Netz und 

dem dynamischen Lieferantentarif auf Basis des Day-Ahead-Börsenstrompreises. (Quelle: Eigene Abbildung) 

Der trainierte RL-Agent auf dem KI-EMS-Edge-Device analysiert die übermittelten Preisinformationen und 

optimiert den Einsatz der flexiblen Energieanlagen sowohl im virtuellen Labor als auch im Pilotgebäude. Die 

Tarifierung erfolgt im SMGW über den TAF 7, bei dem Viertelstundenwerte als Zählerstandsgang aufgezeich-

net und am Folgetag an die Marktteilnehmer versendet werden7.  

Die Steuerbefehle, die auf den Ergebnissen des KI-Systems basieren, werden an die GLT übermittelt. Diese 

Befehle sind zusätzlich in einem Backend-Chart der GLT sowie des KI-EMS-Edge-Devices abrufbar. Es ist anzu-

merken, dass der Lieferant für dynamische Tarife im Rahmen des Projekts bislang keine zeitvariablen Netz-

entgelte übermitteln konnte. Daher wurden diese Informationen direkt vor Ort am KI-Edge-Device zusätzlich 

fest hinterlegt. 

 

7 Mit der MaKo-Reform und der MaBiS-Novelle (BNetzA-Beschluss BK6-24-174) ist ab dem 6. Juni 2025 für Marktlokationen mit iMSys  eine synchrone, viertelstun-

denscharfe Bilanzierung auf Basis von Messwerten verpflichtend. Die bisherige Praxis der Übermittlung der Viertelstundenwerte am Folgetag („Postday“) wird 

durch eine zeitnahe, synchrone Bereitstellung und zentrale Aggregation der Messwerte (u. a. über den MaBiS-Hub) abgelöst. 
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Abbildung 11: Umgesetzte Übermittlung von dynamischen Strompreis-Informationen vom Lieferanten bis zum RL-Agenten auf dem 

Edge-Device (Quelle: Eigene Abbildung) 

7.2.3 Umsetzung der netzorientierten Steuerung 

Die technische Umsetzung einer vom Netzbetreiber initiierten Steuerung gemäß §14a EnWG (vgl. Kapi-

tel 4.2.1) erfolgte im Projekt in drei Schritten, die in Abbildung 12 dargestellt sind. 

 

 

Abbildung 12: Umgesetzte Übermittlung eines §14a-Signals vom simulierten Netzbetreiber bis in die KI-Edge-Komponente              

(Quelle: Eigene Abbildung) 

Die präventiven §14a-Signale (vgl. Kapitel 5.2) sollen als statische Leistungshüllkurven über die Applicability 

Statement 4 (AS4)-Marktkommunikation („langsame“ MaKo) an den aEMT-Adapter des MSB übermittelt wer-

den. Diese Hüllkurven basieren auf historischen Netzzustandsdaten und Engpassprognosen des Verteilnetz-

betreibers, die quartalsweise differenzierte Wirkleistungsgrenzwerte definieren. Die anzulegende Leistungs-

begrenzung wird dabei durch den Netzbetreiber über eine rechnerische Engpassanalyse ermittelt. Da im Pro-

jekt kein Netzbetreiber involviert war, orientieren sich die Zeitfenster der §14a-Leistungshüllkurve an den 

veröffentlichten Hochlastphasen der zeitvariablen Netzentgelte nach Modul 3 des §14a EnWG, die mit den 

prognostizierten Netzengpasszeiten korrelieren. Im Projekt wurde aufgrund der im Projekt verwendeten 

Ostrom MSB | Teleseo GmbH Pilot-NWGB | Fraunhofer IEE 

MSB | Teleseo GmbH Pilot-NWGB | Fraunhofer IEE 
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Smart-Metering-Test-PKI (Public Key Infrastructure) eine produktionsunabhängige Lösung implementiert: 

Statt der regulären AS4-Marktkommunikation („langsame MaKo“) erfolgte die Hinterlegung synthetischer 

§14a-Signale via CSV-Dateien direkt auf der KI-Edge-Komponente (1). Um die AS4-Marktkommunikation zu 

nutzen, hätte ein Betrieb in der Smart-Metering-Wirk-PKI mit eigener zusätzlicher Marktlokation stattfinden 

müssen. 

Die Umsetzung des Ad-hoc-Steuersignals wurde durch einen synthetischen BDEW-Web-API-Proxy realisiert, 

der die kurativen Steuersignale des Netzbetreibers emuliert und in Echtzeit an das KI-gestützte EMS8  über-

trägt. Dieser vom Fraunhofer IEE entwickelte Proxy-Service bildet die standardisierte BDEW-Web-API für die 

„schnelle MaKo“ nach und ermöglicht das Versenden synthetischer Steuerbefehle (2). Diese Signale wurden 

über einen Transport Layer Security (TLS)-gesicherten Kommunikationskanal übertragen, der die Anforde-

rungen der BSI TR 03109-5 erfüllt: Der CLS-Kommunikationsadapter baut dabei eine Ende-zu-Ende-ver-

schlüsselte Verbindung zwischen dem SMGW und der Edge-Komponente des KI-EMS auf, wobei das SMGW 

als TLS-Proxy fungiert. Zur Nachweiserbringung können die Messwerte entweder direkt über einen separaten 

§14a-Zähler im SMGW und/oder in der Steuerbox geloggt werden, alternativ ist auch ein Logging in TAF 10-

Auflösung im Backend des MSB möglich (3) (VDE FNN 2024). 

Die netzorientierte Steuerung wird durch ein zweistufiges Sicherheitskonzept abgesichert: Der RL-Agent 

integriert die dynamischen Obergrenzen in seinen Optimierungsprozess, indem er die verfügbare Gesamt-

leistung auf die steuerbaren Verbrauchseinrichtungen verteilt. Für den Fall, dass der KI-Agent präventive und 

Ad-hoc-§14a-Steuersignale nicht erkennt, greift ein regelbasierter Fallback-Algorithmus ein. 

 

 

 

8 Diese These konnte im Rahmen von Expertengesprächen im Projekt validiert werden. 

Exkurs Smart-Meter-PKI (Public Key Infrastructure) 

Die Smart Metering Public Key Infrastructure (SM-PKI) ist eine zentrale Sicherheitsarchitektur für iMSys+ in 

Deutschland. Sie gewährleistet die sichere Kommunikation und den Schutz sensibler Daten zwischen 

iMSys+, Marktpartnern und Backend-Systemen, die für die effiziente Abwicklung des Energiemarktes not-

wendig sind, und ist in der TR-03109-4 vom BSI spezifiziert (BSI 2025c). 

Die SMGW-PKI erfüllt mehrere Funktionen: Sie stellt digitale Zertifikate aus, die für die Authentifizierung 

und Integrität von Daten erforderlich sind. Diese Zertifikate ermöglichen es, dass nur autorisierte Systeme 

auf sensible Energiedaten zugreifen können, wodurch ein hoher Sicherheitsstandard gewährleistet wird. 

Innerhalb der SMGW-PKI wird zwischen der Test-PKI und der Wirk-PKI unterschieden. Die Test-PKI dient der 

Validierung und Zertifizierung von iMSys+ in kontrollierten Testumgebungen. Hier können Hersteller ihre 

Systeme prüfen, bevor sie in den Markt eingeführt werden. Im Gegensatz dazu ist die Wirk-PKI für den pro-

duktiven Einsatz konzipiert und sorgt dafür, dass die Systeme im realen Betrieb sicher und zuverlässig ar-

beiten. Sie gewährleistet die Authentifizierung und den sicheren Datenaustausch im laufenden Betrieb, 

wodurch die Integrität und Vertraulichkeit der übermittelten Daten sichergestellt wird (BSI 2025a). 
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7.2.4 Technische Schnittstellen 

Die im Pilotprojekt umgesetzten technischen Schnittstellen basieren auf einer Architektur, die sowohl die 

Anforderungen des BSI als auch technische Einschränkungen der zum Projektzeitpunkt verfügbaren Hard-

ware berücksichtigt. Diese Schnittstellen wurden speziell entwickelt, um die Kommunikation zwischen 

iMSys, dem CLS-Kommunikationsadapter und den steuerbaren Ressourcen sicherzustellen. Gleichzeitig wur-

den alternative Ansätze für die Übermittlung dynamischer Tarife und Steuerungsbefehle erprobt. Abbildung 

13 differenziert zwischen den im Pilotprojekt umgesetzten Schnittstellen und den vom VDE FNN für den zu-

künftigen operativen Betrieb standardisierten und empfohlenen Lösungswegen (VDE FNN 2025b, 2025c). 

Umsetzung Schnittstellen im Piloten 

Im Pilotprojekt wurde als zentrale Kommunikationsstrecke eine direkte VPN-Verbindung zwischen dem MSB-

Backend und dem KI-EMS-Edge-Device implementiert, die zwischen dem MSB-Backend und dem CLS-Kom-

munikationsadapter durch den CLS-Kanal geführt wird. Diese Lösung wurde gewählt, da der eingesetzte CLS-

Kommunikationsadapter zum Zeitpunkt der Installation noch keine Unterstützung für das EEBUS-Protokoll 

bot. Zugleich ist festzuhalten, dass diese Architektur im Vergleich zur vom FNN standardisierten Lösung mit 

mehrfacher Protokollwandlung von der MaKo auf IEC 61850 auf EEBUS die Komplexität und damit die Pro-

jektrisiken stark reduziert (PV MAGAZINE 2024). Zur Einrichtung des VPN-Kanals wurde ein OpenVPN-Server auf 

dem CLS-Kommunikationsadapter implementiert. Diese Implementierung steht nach Aussage der Prüfstelle 

des BSI im Einklang mit den Anforderungen der BSI TR 03109–5. Der im Projekt verwendete CLS-Kommunika-

tionsadapter verfügte zum Einbauzeitpunkt über keine Zertifizierung des BSI nach TR 03109–5. 

Darüber hinaus ruft das KI-EMS-Edge-Device Live-Zählerstände über eine herstellerproprietäre Schnittstelle 

am HAN-Port des SMGW ab. In Zukunft wird diese Schnittstelle durch eine standardisierte Schnittstelle ge-

mäß BSI TR-03109-1, Anlage 2, ersetzt (BSI 2024c). 

Für die Übermittlung der dynamischen Preisinformationen wurde eine Datenverbindung durch die oben be-

schriebene VPN-Infrastruktur zwischen dem KI-EMS-Edge-Device und dem aEMT-Adapter eingerichtet. Das 

MSB-Backend hostet einen REST-Dienst, der aktuelle Preisinformationen als JSON vom Lieferanten und Ko-

operationspartner Ostrom abruft und an das KI-Edge-Device weiterleitet9. Für die Erfassung der Messwerte 

zur späteren Abrechnung erfolgte zuvor eine Parametrierung des SMGW nach TAF 7. Dies ist gängige Praxis im 

Markt und ermöglicht häufig auch einen generischen Abruf von Day-Ahead-Preisinformationen10 ohne di-

rekte Verknüpfung zu einzelnen Lieferanten, mit Abrechnung basierend auf Zählerständen und zeitvariablen 

Preisen im Lieferanten-Backend. 

Für die Ad-hoc-Steuerungsbefehle wurde eine weitere Datenverbindung durch die gleiche VPN-Infrastruktur 

zwischen dem KI-EMS-Edge-Device und dem BDEW-Web-API-Proxy-Dienst des Fraunhofer IEE eingerichtet. 

Dies ermöglicht die direkte Übermittlung von §14a-Signalen von der BDEW-Web-API an den CLS-Kommuni-

kationsadapter mit anschließender Weiterleitung an die KI-Edge-Komponente. Echtzeitdaten werden für La-

desäulen über OCPP, für PV-Anlagen über Modbus TCP und für Wärmepumpen über BACnet an die GLT über-

mittelt und von dort an das KI-Edge-Device mitgeteilt.  

 

9 REST API (Representational State Transfer Application Programming Interface) ist eine Web-Schnittstelle, die über HTTP-Methoden wie GET, POST, PUT, 

DELETE auf Ressourcen zugreift, wobei typischerweise JSON (JavaScript Object Notation) als leichtgewichtiges, menschen- und maschinenlesbares Daten-

format für den strukturierten Austausch von Schlüssel-Wert-Paaren zwischen Client und Server verwendet wird 
10 Beispielsweise die Day-Ahead Strompreisdaten der ENTSO-E Transparency Platform 
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Abbildung 13: Umsetzung der technischen Schnittstellen vom externen Markteilnehmer (Lieferant, Netzbetreiber) bis zur Steuerbaren 

Ressource in der Variante a) Umsetzung im Piloten sowie b) zukünftiger Umsetzung am Markt (Quelle: Eigene Abbildung) 

  

TAF 7 für  
Abrechnung 

TAF 5 für  
Abrechnung 

Parametrierung im SMGW Parametrierung im SMGW 
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Umsetzung der Schnittstellen zukünftig operativ 

Während im Pilotprojekt der Schwerpunkt auf der Implementierung der Ad-hoc-Steuersignale lag, sind in der 

Praxis auch statische Leistungshüllkurven über AS4-Markkommunikation als EDIFACT-Nachricht möglich. 

Darüber hinaus sind von Seiten des MSB Protokollumwandlungen in IEC 61850 oder CLS.EEDI erforderlich, 

um die Kommunikation mit der Steuerbox oder dem CLS-Kommunikationsadapter zu realisieren. Dieser gibt 

das §14a-Signal entweder über eine digitale Schnittstelle (EEBUS) oder über eine analoge Schnittstelle (Re-

lais-Kontakte) an die steuerbare Ressource, das EMS oder die GLT weiter. Bei einem zwischengeschalteten 

EMS oder GLT erfolgt die Kommunikation mit den steuerbaren Energieanlagen bzw. Ressourcen ebenfalls 

über EEBUS oder alternativ über weitere Protokolle wie Modbus TCP für PV und Ladestationen, OCPP für La-

destationen oder Smart Grid Ready (SG-Ready) für Wärmepumpen. 

Zusätzlich können Steuersignale zukünftig direkt über das SMGW ohne separaten CLS-Kommunikations-

adapter umgesetzt werden. Beim sogenannten SMGW-plus-Konzept fordert das Gateway Leistungsanpas-

sungen via EEBUS-Protokoll direkt bei steuerbaren Energieanlagen oder EMS an. Dies ermöglicht eine kos-

tensenkende Direktkommunikation ohne Protokollumwandlung und zusätzliche Hardware (PPC 2025). Die 

Standardisierung zur Steuerung aus dem SMGW ist zum Zeitpunkt der Berichtserstellung jedoch noch in der 

Ausarbeitung und die Lösung noch nicht marktreif nutzbar (VDE FNN 2025c). 

Die Übermittlung der dynamischen Tarife erfolgt zukünftig aus regulatorischer Sicht über das SMGW nach 

TAF 5, welcher einen ereignisabhängigen Stromtarif mit definierten Tarifstufen beschreibt (Kübler et al. 2024) 

Diese Konfiguration ermöglicht die Abbildung von Preisinformationen auf eine begrenzte und feste Anzahl an 

Tarifstufen im SMGW. Jedes Tarifregister im SMGW wird entsprechend der vom Lieferanten vorgelegten Zeit-

reihen konfiguriert, und die Umschaltung zwischen den Tarifstufen erfolgt durch den Gateway-Administrator 

über die WAN-Schnittstelle des SMGW. Alternativ kann der Tarifstufenwechsel aus dem EMS über die HAN-

Schnittstelle oder durch ein internes Ereignis im SMGW ausgelöst werden. Die Tarifinformationen zur Nut-

zung im EMS werden über die HAN-Schnittstelle am SMGW abgerufen. Die Abrechnung erfolgt nach ver-

brauchter Elektroenergie je Tarifstufe im Backend des Lieferanten. Bislang wurde diese Anwendung nur in 

Demonstrationsprojekten eines SMGW-Anbieters realisiert (EMH metering 2024), da eine definierte massen-

taugliche und interoperable Kommunikation zwischen Lieferanten und MSB sowie zwischen Gateway-Admi-

nistrator und EMS über das SMGW noch ausstehend ist. Insbesondere sind Ergänzungen in der MaKo zwi-

schen Lieferanten und MSB sowie in der BSI TR-03109-1 erforderlich. 

7.3 KI-Algorithmen 

Das Kapitel beschreibt die Entwicklung und Implementierung der KI-basierten Steuerungsalgorithmen für 

das intelligente Energiemanagement in NWG. Ausgehend von den Grundprinzipien des RL wird zunächst das 

Konzept des bestärkenden Lernens (engl. Reinforcement Learning) erläutert, bei dem ein autonomer Agent 

durch Interaktion mit seiner Umgebung optimale Handlungsstrategien entwickelt. Der Schwerpunkt liegt 

anschließend auf der praktischen Umsetzung in zwei Phasen: Zunächst wird die Entwicklung und das Trai-

ning der KI-Agenten in einer kontrollierten Simulationsumgebung beschrieben. Diese Trainingsumgebung 

ermöglicht es, verschiedene Szenarien und Steuerungsstrategien risikolos zu erproben und die Algorithmen 

schrittweise zu optimieren. Dabei kommen sowohl historische Gebäudedaten als auch synthetische Datens-
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ätze zum Einsatz. Im letzten Teil wird die Überführung der trainierten Agenten in die operative Edge-Umge-

bung behandelt. Hier stehen insbesondere die Integration in die bestehende GLT sowie die Implementierung 

von Pre- und Post-Processing-Mechanismen im Fokus. Diese gewährleisten eine robuste Echtzeitsteuerung 

unter Berücksichtigung technischer Randbedingungen wie Netzvorgaben nach §14a EnWG oder Komfortan-

forderungen der Nutzerinnen und Nutzer. 

7.3.1 Einführung Reinforcement Learning 

RL ist ein Teilbereich des maschinellen Lernens, der sich mit der Entscheidungsfindung in dynamischen Um-

gebungen befasst. Der Ansatz beruht auf dem Prinzip, dass ein Agent durch Interaktion mit seiner Umgebung 

lernt, indem er für seine Handlungen Belohnungen oder Bestrafungen erhält. Das Ziel des Agenten ist es, eine 

Strategie zu entwickeln, die es ihm ermöglicht, die kumulierte Belohnung über die Zeit hinweg zu maximie-

ren. Im Gegensatz zu vielen anderen Lernmethoden ist RL nicht auf eine explizite Lehrdatenbasis angewie-

sen, sondern erwirbt Wissen aus Erfahrungen. 

Die grundlegenden Elemente des RL umfassen mehrere Schlüsselaspekte: 

• Beobachtungen (Observations): Informationen über den aktuellen Zustand der Umgebung, die der 

Agent erhält und die oft unvollständig sind. 

• Aktionen (Actions): Eine Vielzahl von Handlungen, die der Agent in der Umgebung ausführen kann, 

wobei jede Aktion den Zustand der Umgebung beeinflusst und zukünftige Beobachtungen sowie Be-

lohnungen bestimmt. 

• Belohnungen (Rewards): Rückmeldungen, die der Agent nach der Ausführung einer Aktion erhält. 

Diese können positiv oder negativ sein und dienen als Maß für den Erfolg der gewählten Handlung. 

• Strategie (Policy): Eine Regel oder Funktion, die definiert, wie der Agent in unterschiedlichen Situa-

tionen agiert, also welche Aktion er basierend auf dem aktuellen Zustand auswählt. Diese Strategie 

kann deterministisch oder stochastisch sein und wird kontinuierlich optimiert. Es handelt sich hier-

bei eher um ein theoretisches Konzept als um eine tatsächliche Komponente des Agenten. 

Die Ansätze des RL können zudem durch modellbasierte Methoden ergänzt werden. Diese Methoden beinhal-

ten die Erstellung eines Modells der Umgebung, das es dem Agenten ermöglicht, Vorhersagen über zukünf-

tige Zustände und Belohnungen zu treffen. Mithilfe dieser Simulation kann der Agent verschiedene Strate-

gien testen und die vielversprechendste auswählen, bevor er in der realen Umgebung agiert. Im Gegensatz 

dazu lernen modellfreie Methoden direkt aus den Interaktionen mit der Umgebung, ohne ein explizites Mo-

dell zu erstellen.  

Wenn der Agent durch ein tiefes neuronales Netz repräsentiert wird, spricht man von Deep RL. Diese Kombi-

nation aus klassischem RL und Deep Learning nutzt einen sogenannten Multi-Actor-Critic-Algorithmus. Dies 

bedeutet Folgendes: 
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• Actor: Der Agent, der innerhalb der Umgebung Erfahrungen sammelt. 

• Multi: Mehrere Actors werden gleichzeitig eingesetzt, um während des Trainings parallel Erfahrun-

gen zu sammeln und so das Training erheblich zu beschleunigen. Die verschiedenen Actors lernen 

dabei gemeinsam aus allen gesammelten Erfahrungen. Dieser Ansatz ist nur möglich, wenn eine 

Gym-Umgebung (siehe unten) vorhanden ist, von der mehrere, voneinander unabhängige Kopien 

erstellt werden können. 

• Critic: Der Critic bewertet Zustände nach ihrem Wert und berechnet die Schätzungen zukünftiger 

Belohnungen. Er fungiert als eine Art Überwachung für die Actors und seine Vorhersagen werden als 

Teil des Entscheidungsprozesses herangezogen. 

Ein Multi-Actor-Critic-Algorithmus hat diese Struktur nur während des Trainings. Nach Abschluss des Trai-

nings wird der bestmögliche, d. h. am besten handelnde Actor als einziger Agent für die Generierung von Ak-

tionen eingesetzt. 

 

7.3.2 KI-Agenten und Trainingsumgebung 

Der KI-Agent 

Im Pilotprojekt interagiert der KI-Agent im Rahmen des RL mit einer virtuellen Trainingsumgebung, die als 

vereinfachtes Abbild der Realität dient. Diese Umgebung modelliert im Pilotprojekt steuerbare Energieanla-

gen (Assets) wie Wärmepumpen, Ladesäulen oder PV-Systeme und bildet deren physikalisches Verhalten so-

wie regelungstechnische Zusammenhänge ab. Der Agent lernt durch trial-and-error, optimale Steuerungs-

strategien zu entwickeln, indem er kontinuierlich die drei genannten Schlüsselelemente verarbeitet (siehe 

auch Kapitel 7.3.1 Einführung Reinforcement Learning): 

1. Beobachtung (Observation): Der Agent erfasst den aktuellen Zustand der Assets (z. B. Raumtempe-

ratur, Ladezustand von E-Fahrzeugen, PV-Erzeugung oder Strompreise). 

Exkurs Reinforcement Learning – Lernen wie ein Baby 

Reinforcement Learning (RL) lässt sich gut anhand eines Babys veranschaulichen, das Laufen lernt. Das Baby 

ist der Agent, der in seiner Umgebung, beispielsweise dem Wohnzimmer, agiert. Sein Ziel ist es, laufen zu ler-

nen, was dem Ziel eines RL-Agenten entspricht, eine optimale Strategie zu entwickeln. Der Lernprozess beginnt 

mit zufälligen Bewegungen – Strampeln, Rollen, Aufstehversuchen. Jede Bewegung ist eine Aktion, der Zustand 

des Babys (liegen, sitzen, stehen) ist der Zustand in der RL-Terminologie. 

Gelingt ein Schritt ohne Fallen, gibt es eine positive Belohnung, etwa Applaus oder Freude bei den Eltern, was 

dem Belohnungssignal im RL entspricht. Ein Sturz bedeutet ausbleibende oder negative Rückmeldung. Das 

Baby experimentiert und lernt mit der Zeit, welche Aktionen zum Erfolg führen. Dabei entwickelt es eine Stra-

tegie: Es wiederholt Bewegungen, die zu Erfolg führen (z. B. Festhalten am Couchtisch) und vermeidet solche, 

die schmerzhaft enden. 

Dieser Lernprozess erfolgt schrittweise – durch ständiges Ausprobieren, Beobachten der Reaktionen und An-

passen der Taktik. Entscheidend ist das Feedback der Umwelt: Je stabiler die ersten Schritte gelingen, desto 

stärker wird das Baby durch das Ziel (z. B. ein Spielzeug) motiviert, seine motorischen Fähigkeiten weiter zu 

verfeinern. 
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2. Aktionen (Action): Basierend auf den Beobachtungen wählt der Agent eine Handlung (z. B. Anpas-

sung der Solltemperatur des Pufferspeichers für die Wärmepumpe oder Ladeleistung an den Lade-

säulen). 

3. Belohnung (Reward): Für jede Aktion erhält der Agent eine Belohnung (positiv/negativ), die die 

Qualität seiner Entscheidung bewertet – etwa Kosteneinsparungen, Komforteinhaltung oder Netz-

stabilität. 

Die Belohnungsfunktion (engl. Reward Function) spielt eine entscheidende Rolle für den Lernerfolg des 

Agents. Im Rahmen des Projekts wird sie so gestaltet, dass sie betriebswirtschaftliche Effizienz, Nutzerkom-

fort und technische Randbedingungen balanciert. Der Agent erhält positive Belohnungen für die Ausnutzung 

günstiger Strompreise und die Einhaltung von Komfortgrenzwerten wie etwa einer Raumtemperatur von 

mindestens 20 °C während der Arbeitszeiten. Negative Belohnungen (Bestrafungen) werden verhängt, wenn 

der Agent die E-Kfz innerhalb der Standzeit nicht hinreichend auflädt, Leistungslimits nach §14a EnWG über-

schreitet oder die Reserve-Gasthermen betreiben lässt.  

Diese Ausgestaltung der Belohnungsfunktion hat direkten Einfluss auf die Strategie des Agents, da sie ihm 

hilft, Entscheidungen zu treffen, die nicht nur kurzfristige Belohnungen maximieren, sondern auch langfris-

tige betriebswirtschaftliche und technische Ziele berücksichtigen.  

Die Belohnungsfunktion ist daher elementar für den Erfolg oder Misserfolg des Trainings und damit der wich-

tigste und sensibelste Bestandteil der KI-Modellierung. Im folgenden Abschnitt „Trainingsumgebung“ wird 

darauf nochmals detaillierter eingegangen. 

Die Trainingsumgebung 

Im Projekt wurde eine modulare Trainingsumgebung entwickelt, die sowohl reale als auch synthetische 

Datensätze nutzt, um den KI-Agenten für die Steuerung von NWG zu trainieren. Sie wurde gemäß des durch 

das OpenAI Package „Gym“ bzw. „Gymnasium“ definierten Standards aufgebaut und wird deshalb im Fol-

genden auch Gym-Environment genannt. Es handelt sich hierbei um einen Standardaufbau, dem alle gängi-

gen RL-Trainingsumgebungen folgen, um die Entwicklung von RL-Algorithmen und entsprechender Paralleli-

sierungs-Tools über verschiedene Anwendungsfälle hinweg zu vereinheitlichen. 

Die Interaktion des Agenten mit dem Gym-Environment (engl. Agent-Environment Interaction) erfolgt dabei 

über die standardisierte Schnittstelle der Gym-API. Diese sorgt für eine Orchestrierung der Beobachtungen 

der einzelnen Assets wie Wärmepumpen oder PV-Systeme zu einer einzelnen, im für den Agenten benötigten 

Format vorliegenden Beobachtung. Über dies verarbeitet sie die Aktion des Agenten so, dass sie sinnvoll im 

Gym-Environment Einfluss nehmen können. In dieser Weise ersetzt die Agent-Environment-Interaktion so die 

weiter unten beschriebene Kommunikationskette auf der Edge-Komponente, bzw. das Pre- und Post-Proces-

sing, das für jede reale Anwendung von RL-Agenten nötig ist. 

Die Umgebung bildet folgende steuerbare und nicht steuerbare Assets ab: 

• Wärmepumpe (steuerbar): Ein digitaler Zwilling simuliert das physikalische Verhalten der Wärme-

pumpe bzw. genauer gesagt des gesamten Heizungssystems aus Wärmepumpe, thermischem Puf-

ferspeicher und nachgeschalteten (Reserve-)Gasthermen, sowie dessen Einfluss auf die Innenraum-

temperatur. 

• Ladesäulen (steuerbar): Nutzerprofile simulieren reale Ladebedarfe (Ankunftszeiten, Pendeldistan-

zen) und ermöglichen die Optimierung von Ladezeiträumen anhand dynamischer Preissignale. 
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• PV-Anlage (nicht steuerbar11): Auf Basis von historischen Wetterdaten werden die aktuelle PV-Er-

zeugung sowie die Einspeise-Prognose simuliert.  

• §14a-Signal (nicht steuerbar): Die Trainingsumgebung integriert statische Leistungshüllkurven 

und Ad-hoc-Steuersignale als technische Randbedingungen. Der Agent lernt, verfügbare Leistung 

auf Anlagen zu verteilen und präventive Strategien (z. B. Vorheizen des Pufferspeichers) zu entwi-

ckeln. 

Als steuerbares Asset wird hierbei jedes Asset bezeichnet, auf das der Agent mit seinen Aktionen direkten Ein-

fluss hat. Nicht steuerbare Assets werden dagegen durch den Agenten nicht beeinflusst, liefern aber wichtige 

Beobachtungen für dessen Entscheidungsfindung. 

Die Trainingsumgebung wurde modular aufgebaut, um die Komplexität der Steuerung schrittweise zu erhö-

hen. Es handelt sich dabei um ein gängiges Vorgehen in der Software-Entwicklung, durch das Folgefehler ver-

mieden und die Testung einzelner Assets möglich gemacht werden. Die Folgestufe beinhaltet dabei jeweils 

den Umfang der Vorstufen. 

1. Grundkonfiguration: Optimierung der Ladesäulen anhand dynamischer Strompreise inkl. zeitvari-

abler Netzentgelte. 

2. §14a EnWG-Szenarien: Einführung von Leistungsgrenzen als zusätzliche Optimierungsrestriktion. 

3. Erweiterung um PV-Anlage: Eigenstromnutzung und Einbindung von Erzeugungsprognosen. Ein 

Einspeisetarif wurde vereinfacht aufgrund der hohen Grundlast des Gebäudes nicht berücksichtigt. 

4. Integration der Wärmepumpe: Berücksichtigung thermischer Trägheit und Komfortanforderun-

gen. 

Durch diese schrittweise Erweiterung konnte der Agent zunächst isolierte Entscheidungsmuster erlernen, 

bevor er komplexe Zielkonflikte (z. B. Nutzerkomfort vs. Kosteneffizienz) bewältigt. Neben den einzelnen As-

sets konnte so auch die Nützlichkeit der einzelnen Reward-Komponenten (z. B. Belohnung für Vollladung, 

Belohnung für günstiges Laden) separat getestet werden. 

 

 

11 Mit der neuen EnWG-Novelle von Februar 2025 ist die PV-Anlage in Zukunft im Falle einer möglichen Einspeisung als steuerbares Asset zu behandeln 

(siehe dazu Kapitel 4.2.4 Aktuelle regulatorische Entwicklungen für Flexibilitätsoptionen ) 
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Abbildung 14: Grundkonfiguration der Trainingsumgebung mit Interaktion zwischen KI-Agent und Ladesäule (Quelle: Eigene Abbildung) 

In der Grundkonfiguration „Optimierung der Ladesäulen anhand dynamischer Strompreise“ agiert ein KI-

Agent innerhalb einer Trainingsumgebung mit einer Ladesäule. Als Eingangsdaten nutzt er dynamische Day-

Ahead-Strompreise einschließlich zeitvariabler Netzentgelte. Zusätzlich berücksichtigt der Agent den vermu-

teten Ladebedarf des angeschlossenen E-Fahrzeugs sowie den grundlegenden Status, ob überhaupt ein 

Fahrzeug mit der Ladesäule verbunden ist. Informationen zum tatsächlichen Ladebedarf oder zur geplanten 

Abfahrtszeit sind in der Praxis an NWG über die Ladesäulen nicht verfügbar12 und werden daher weder im 

Training berücksichtigt noch dem Agenten zur Verfügung gestellt. 

Durch Aktionen wie das Anpassen der maximalen Ladeleistung steuert er den Ladevorgang, um zwei primäre 

Ziele zu erreichen: 

1. Die garantierte Vollladung des Fahrzeugs bis zum (implizit angenommenen) Abfahrtszeitpunkt. 

2. Die Priorisierung des Strombezugs in preisgünstigen Zeitfenstern, insbesondere bei niedrigen 

Strompreisen und reduzierten Netzentgelten13. Ebenso bevorzugt der KI-Agent Zeiten von hoher PV-

Stromerzeugung, verringert bzw. vermeidet dabei einen Strombezug und senkt damit die Strombe-

zugskosten. 

Diese Ziele sind Teil der Belohnungsfunktion und entsprechend gewichtet. Die höchste Priorität erhält die 

vollständige Ladung des Fahrzeugs bis zum gewünschten Ladezustand14 zum erwarteten Abfahrtszeitpunkt. 

Ein Nicht-Laden bzw. eine unzureichende Teilladung führt zu einer Bestrafung. Die zweite Priorität liegt auf 

dem Laden während preisgünstiger Zeitfenster: Strombezug zu Preisen unterhalb des Tagesmittelwerts wirkt 

sich positiv auf die akkumulierte Belohnung aus, während Ladevorgänge bei überdurchschnittlich hohen 

Preisen entsprechend negativ bewertet werden. 

 

12 Siehe Kapitel 10.6 Regulatorik und Standards, Abschnitt „Datenverfügbarkeit und Schnittstellen“. 
13 KI-Agent berücksichtig den summierten Strompreis aus dynamischem Tarif auf Basis von Day-Ahead-Börsenpreisen sowie zeitvariablen Netzentgelten 

nach §14a EnWG 
14 Gewünschter Ladezustand z. B. 80 %, einzustellen im Fahrzeug durch den Nutzer bzw. der Nutzerin 
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Abbildung 15: Vereinfachte Darstellung des vollständigen Trainingsumgebungen mit Interaktion des KI-Agenten mit den Assets wie u. a. 

Wärmepumpe, Ladesäule und PV-Anlage (Quelle: Eigene Abbildung) 

Die beschriebene Grundkonfiguration entspricht dabei der Ausbaustufe 1 der durchgeführten Labor- und 

Feldtests. Für Ausbaustufe 2 erfolgte eine Ergänzung um §14a-Steuersignale sowie eine emulierte PV-Anlage. 

Die KI-Trainingsumgebung wurde für die finale Ausbaustufe 3 schließlich um das Wärmeversorgungssystem 

des Pilotstandorts ergänzt, das aus Wärmepumpe, Pufferspeicher und Gas-Spitzenlastkessel besteht (vgl. 

Kapitel 8, Labor- und Feldtests). Eine vereinfachte Darstellung der vollständigen Trainingsumgebung ein-

schließlich aller verfügbaren Assets und möglicher Actions ist in Abbildung 15 zu finden und im Folgenden 

durch Ergänzungen näher beschrieben. 

Als Observation erfasst der Agent neben dynamischen Strompreisen, Ladezuständen und PV-Ertragsprogno-

sen auch Echtzeitdaten zur Wärmepumpenleistung, Innenraumtemperatur, Außentemperatur und Steuersig-

nalen nach §14a EnWG. Zusätzlich werden historische und prognostizierte Wärmebedarfsdaten des Gebäu-

des einbezogen, um die Interaktion zwischen Wärmeerzeugung und -verbrauch abzubilden. Ziel ist das Trai-

ning eines vorrauschauenden optimierten Betriebes auf Basis von Prognosen (Preis, PV-Erzeugung, Wärme-

bedarf) unter Berücksichtigung ggf. anliegender 14a-Signale des Netzbetreibers. 

Zusätzlich wurde ein digitaler Zwilling der Heizungsanlage entwickelt, welcher die thermodynamischen 

Wechselwirkungen zwischen Wärmepumpe, Pufferspeicher, Gebäude und Umwelt mithilfe vereinfachter par-

tieller Differentialgleichungen abbildet. Diese verknüpfen Temperaturniveaus im Pufferspeicher (TPuffer), Rohr-

netz (TVorlauf), Gebäude (TRaum) und der Umgebung (TUmwelt) über lineare Wärmeleitungsmodelle. Durch numeri-

sche Integration werden die Auswirkungen von Sollwertanpassungen auf die Systemdynamik berechnet – bei 

reduzierter Rechenlast gegenüber komplexeren Simulationsmethoden. Die Kalibrierung des Modells erfolgt 

datenbasiert: Der COP (Coefficient of Performance) der Wärmepumpe z. B. wurde durch Regression histori-

scher Strom- und Wärmeerzeugungsdaten ermittelt (siehe Abbildung 6 in Kapitel 7.1.3. Wärmepumpe). 
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Zudem wurde eine Belohnungsfunktion für die Wärmeversorgung entworfen, um den KI-Agenten während 

des Trainings zu leiten. Diese Funktion berücksichtigt die drei zentralen Steuerungsziele Komfort, Kosteneffi-

zienz und Vermeidung fossiler Brennstoffe. Diese Ziele werden durch spezifische Belohnungskomponenten 

kodiert, die den Agenten differenziertes Feedback geben: 

• Komfortsicherung: Der Agent erhält eine positive Belohnung, wenn die Raumtemperatur im Ge-

bäude innerhalb des Komfortbereichs von 20 bis 24 °C liegt. Abweichungen von diesem Bereich füh-

ren zu einer Bestrafung. Dies garantiert eine hohe Priorität für das Wohlbefinden der Nutzerinnen 

und Nutzer. 

• Minimierung der Gasnutzung: Jede Vermeidung des Einsatzes der gasbetriebenen Heizkessel wird 

mit einer kleinen positiven Belohnung honoriert. Die Nutzung von Gas führt zu proportionalen Be-

strafungen, abhängig vom Umfang des Verbrauchs. Dies unterstützt das Ziel der Dekarbonisierung. 

• Kosteneffizienz: Der Agent wird dafür belohnt, wenn er die Wärmepumpe in Zeiten niedriger Strom-

preise betreibt, gemessen am Verhältnis zum Tagesdurchschnittspreis. Umgekehrt werden hohe 

Strompreise mit Bestrafungen belegt. Diese Komponente fördert die Nutzung günstiger Stromzeiten 

und reduziert Betriebskosten. Sie minimiert jedoch nicht unbedingt den benötigten Strombezug, 

sondern vielmehr den Preis pro kWh. 

Da diese Ziele teilweise widersprüchlich sind (z. B. könnte der Einsatz von Gas kurzfristig den Komfort sichern 

oder Kosten senken), wurde eine Gewichtung der Belohnungskomponenten eingeführt. Die Sicherstellung 

des Komforts hat dabei die höchste Priorität und wird mit den stärksten Belohnungen bzw. Bestrafungen ver-

sehen. Die Minimierung der Gasnutzung folgt an zweiter Stelle, während die Kostenoptimierung die nied-

rigste Priorität hat. Dieses Gewichtungsschema stellt sicher, dass der Agent primär auf die Einhaltung der 

Komforttemperatur fokussiert ist, ohne jedoch die anderen Ziele zu vernachlässigen. 
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Assets Dimension Belohnungsfunktionen  

Ladesäulen 

Nutzerkomfort  
Sicherstellung der Vollladung des Fahrzeugs bis 

zum gewünschten Ladezustand 

Kosteneffizienz 

Belohnung bei Laden in preisgünstigen Zeitfens-

tern auf Basis dynamischer Stromtarife und zeitva-

riabler Netzentgelte 

PV-Anlage Eigenstromnutzung 

Maximierung des Eigenverbrauchs durch Laden in 

Zeitfenstern mit PV-Überschuss (Vermeidung von 

Kosten durch Netzbezug) 

Netzorientierte  

Steuerung 
Regulatorische Konformität 

Bestrafung bei Nicht-Einhaltung netzseitiger Steu-

ersignale nach §14a EnWG (ad hoc und präventiv) 

Wärmeversorgung 

(Wärmepumpe, Gas-

kessel, Pufferspeicher) 

Nutzerkomfort 

Bestrafung bei Nicht-Einhaltung der Raumtempe-

ratur im Gebäude innerhalb des definierten Kom-

fortbereichs (20–24 °C) 

Dekarbonisierung 
Minimierung des Gasverbrauchs durch Bestrafung 

(hoher Gaspreis) 

Kosteneffizienz 

Belohnung des Wärmepumpenbetriebs in preis-

günstigen Zeitfenstern auf Basis dynamischer 

Stromtarife und zeitvariabler Netzentgelte 

Tabelle 1: Überblick über die verschiedenen Dimensionen der Belohnungsfunktionen in Bezug auf die jeweiligen Assets im KI-Training 

Zusätzlich ist zu berücksichtigen, dass häufiges An- und Ausschalten der Wärmepumpe deren Lebensdauer 

beeinträchtigen kann. Obwohl dies aus Zeitgründen nicht explizit in die Belohnungsfunktion integriert 

wurde, bleibt es ein wichtiges Optimierungsziel für zukünftige Entwicklungen. 

In Tabelle 1 sind abschließend die Dimensionen der Belohnungsfunktion für die jeweiligen Assets in den Ka-

tegorien Nutzerkomfort, Kosteneffizienz, regulatorische Konformität mit §14a EnWG, Eigenstromoptimierung 

und Dekarbonisierung zusammengefasst. Die je Asset aufgeführten Dimensionen sind entsprechend ihrer 

Priorisierungsreihenfolge von oben (höchste Priorität) nach unten (niedrigste Priorität) geordnet. 

Die Trainingspipeline 

Die Trainingspipeline bildet das strukturelle Rückgrat jedes KI-Trainings. Sie orchestriert die Trainingspro-

zesse, indem sie die Interaktion zwischen Agent und Umgebung koordiniert. Darüber hinaus gewährleistet 

sie die Validierung und das angemessene Testen der trainierten Agenten, um den besten Actor auszuwählen 

– somit das neuronale Netz, das die effektivste Strategie erlernt hat und in der Edge-Komponente eingesetzt 

wird. 

Spezialisierte RL-Tools wie Ray RLlib ermöglichen die Parallelisierung des Trainings gemäß dem zuvor be-

schriebenen Multi-Actor-Ansatz durch die Nutzung der Gym-API. Ein High-Performance-Computing (HPC)-

Cluster stellt dabei die erforderlichen Ressourcen (CPUs, GPUs, Speicher usw.) bereit. 

Die Leistung des RL-Agenten wird in der Trainingsumgebung, im virtuellen Labor und in Feldtests validiert 

und getestet. Sowohl der Test im virtuellen Labor als auch der Feldtest sind nicht mehr Teil der Trai-

ningspipeline, sondern verwenden den bereits als „besten“ identifizierten Agenten aus der Trainingspipeline. 
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7.3.3 KI-Agenten auf Edge-Device 

Die folgende Beschreibung des auf dem Edge-Device bereitgestellten KI-Agenten bezieht sich auf die intelli-

gente Steuerung der Ladesäulen (vgl. Abbildung 16), bei der sowohl Preis- als auch Steuersignale gemäß 

§14a EnWG berücksichtigt werden. Das Deployment des KI-Agenten auf dem Edge-Device erfolgt durch die 

Übertragung des trainierten neuronalen Netzes (d. h. des besten Actors) über einen sicheren VPN-Kanal aus 

der Cloud-Umgebung am Fraunhofer IEE auf das Edge-Computing-Device von Smartrplace. Damit der KI-

Agent mit seinem trainierten neuronalen Netz im laufenden Betrieb kontinuierlich Echtzeiten verarbeiten 

kann, ist ein sogenanntes Pre-Processing notwendig. Hierbei werden die eingehenden Rohdaten in standar-

disierte Observations für den Agenten übersetzt. Das anschließende Post-Processing übersetzt die Actions 

des Agenten in konkrete Steuersignale für die Wallboxen. Dabei durchlaufen die Aktionen mehrere Validie-

rungsebenen: 

1. Prüfung der technischen Limits (maximale Ladeleistung der Wallbox) 

2. Berücksichtigung anliegender Steuersignale nach §14a EnWG 

3. Sicherstellung der Nutzerinnen- und Nutzeranforderungen (minimaler Ladezustand bei Abfahrt) 

Falls der Agent Aktionen vorschlägt, die Restriktionen verletzen würden, greift ein regelbasierter Algorithmus 

ein. Dieser reduziert beispielsweise die Soll-Ladeleistung bei drohender Überschreitung eines anliegenden 

§14a-Signals. 

 

Abbildung 16: Interaktion des KI-Agenten mit der Ladesäule auf dem Edge-Device (Quelle: Eigene Abbildung) 

Während das KI-Training in der Cloud auf historischen und synthetischen Daten basiert, weist die operative 

Edge-Umgebung drei wesentliche Unterschiede auf: 

1. Adaptive Strategieanpassung durch Echtzeitdaten 

Der KI-Agent erhält alle 15 Minuten aktualisierte Betriebsdaten von angeschlossenen Assets (z. B. 

Ladestationen, PV-Erzeugung) über die GLT sowie Informationen externer Marktteilnehmer. Diese 

Daten umfassen unter anderem aktuelle Ladeleistungen, Steuersignale nach §14a EnWG und 

Aufbereitung Dateninputs 
zu nutzbarer Observation 

Übersetzen Agenten-
Outputs in Steuersignale  
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Preisinformationen des Lieferanten. Auf Basis dieser Beobachtungen passt der Agent seine Steuerlo-

gik an, jedoch ohne ein Neutraining des neuronalen Netzes, da ausschließlich die vortrainierten Lo-

giken verwendet werden. 

2. Entkopplung von Belohnungsfunktion und Betrieb 

Im Gegensatz zum Cloud-Training, bei dem eine multidimensionale Belohnungsfunktion (z. B. 

Stromkosten, netzorientierte Steuerung, Nutzerkomfort) das Lernen steuert, erfolgt im Edge-Betrieb 

ausschließlich die Anwendung des trainierten Modells. Die Bewertungslogik wirkt somit nur indirekt 

über die vortrainierte Policy. 

3. Iterative Praxisvalidierung 

Labor- und Feldtests zeigen in der Regel systematische Abweichungen zwischen den simulierten 

Trainingsdaten und dem realen Anlagenverhalten. Beispiele hierfür sind unterschiedliche Ladecha-

rakteristika verschiedener Fahrzeughersteller sowie die Mindestladeleistung von 4,2 kW. 

Diese Ergänzungen verdeutlichen den hybriden Ansatz, der cloudbasiertes Training mit praxisadaptivem 

Edge-Betrieb kombiniert – ein Merkmal, das für KI-gestützte EMS typisch ist. 
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8 Labor- und Feldtests 

Die Labor- und Feldtests des Projekts wurden in mehreren aufeinander aufbauenden Ausbaustufen durchge-

führt, um die Funktionalität und Effektivität des KI-basierten Steuerungsalgorithmus unter verschiedenen 

Bedingungen zu validieren. Jede Stufe brachte eine zunehmende Komplexität und Integration zusätzlicher 

Systemkomponenten mit sich. 

Pre-Tests: 

Im Rahmen der Pre-Tests wurde zunächst eine Reihe von Funktions- und Steuerungstests mit den Ladesäu-

len durchgeführt, ohne den KI-Agenten einzusetzen. Ziel dieser Tests war es, das Verhalten der Ladesäulen zu 

evaluieren und zu prüfen, ob ein Feintuning oder eine Kalibrierung des KI-Agenten im Training erforderlich 

war. 

Im nächsten Schritt wurden erste Versuchsdurchläufe mit einem initial trainierten Agenten unternommen. 

Hierbei lag der Fokus nicht auf der Optimierungsqualität, sondern auf der Erprobung der gesamten Prozess-

kette sowie der Datenübertragungswege. Dieser Ansatz diente der Stabilisierung des Systems und der Identi-

fizierung sowie Behebung potenzieller Fehlerquellen. 

 

Abbildung 17: Ablauf der Labor- und Feldtests in der jeweiligen Ausbaustufe inklusive der dazugehörigen Vor-Tests (Quelle: Eigene Abbil-

dung) 

Ausbaustufe 1: 

In der ersten Ausbaustufe kam der KI-Agent erstmals zum Einsatz, um das preisoptimierte Laden von Elektro-

fahrzeugen mit ausschließlichem Netzbezug zu realisieren. Dabei standen ausschließlich marktliche Preissig-

nale und zeitvariable Netzentgelte nach §14a EnWG (Modul 3) im Fokus (vgl. Kapitel 7.2.2). Eine Integration 

von Eigenstromerzeugung durch PV oder eine explizite netzorientierte Steuerung waren in dieser Phase nicht 

vorgesehen. Die Tests erfolgten sowohl an realen Ladesäulen als auch unter Einsatz eines Lade-Emulators im 

virtuellen Labor. Das Ziel bestand darin, die vom KI-Agenten erlernte Fähigkeit zur kosteneffizienten Steue-

rung der Ladezeiten im Feld unter realen Bedingungen zu demonstrieren. 

Nov 24 – Jan 25 Jan 25 Febr 25 
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Ausbaustufe 2: 

Diese Stufe knüpfte an die erste Ausbaustufe an und ergänzte das System um einen PV-Emulator mit 24 kWp 

Nennleistung. Der Fokus lag auf der Optimierung des Eigenverbrauchs und der gezielten Nutzung dynami-

scher Strompreise. Ein weiteres wesentliches Merkmal der zweiten Ausbaustufe war die aktive Einbindung 

von Steuersignalen gemäß §14a EnWG – sowohl präventiv als auch ad hoc (vgl. Kapitel 7.2.3). Diese wurden 

sowohl im Trainingsprozess des KI-Agenten berücksichtigt als auch durch eine ergänzende regelbasierte Lo-

gik verarbeitet, die bei Bedarf eine unmittelbare Limitierung der Ladeleistung je Ladesäule umsetzt. 

 

Ausbaustufe 3: 

Die abschließende Phase des Projekts erhöhte die Komplexität des KI-Modells durch die Integration der Wär-

meversorgung des Pilotgebäudes. Diese Komplexität ergibt sich sowohl aus der Vielzahl der Inputgrößen als 

auch aus der indirekten Steuerung, die über die Regelung der Vorlauftemperatur im Pufferspeicher sowie die 

Soll-Rauminnentemperatur erfolgt. Zudem stellt die thermodynamische Trägheit, die durch die Gebäude-

masse bedingt ist, einen weiteren Einflussfaktor dar. Aufgrund der begrenzten Projektlaufzeit konnte das KI-

Modell jedoch nicht den erforderlichen Reifegrad erreichen, um im Rahmen von Feldversuchen demonstriert 

zu werden. Stattdessen wurde ein vertiefter Blick in die KI-Trainingsumgebung geworfen, um das Verhalten 

des Modells unter diesen erweiterten Bedingungen umfassend zu analysieren. Die Trainingsumgebung simu-

lierte realitätsnah die Interaktion zwischen Wärmebedarf und Ladeanforderungen, wobei dynamische Preis-

signale sowie mögliche Leistungslimits seitens der Netzbetreiber berücksichtigt wurden. Um das Verhalten 

des KI-Agenten auf dynamische Preissignale besser nachvollziehen zu können, wurde die PV-Anlage in dieser 

Ausbaustufe deaktiviert. 

Dieser iterative Ansatz erlaubte es, den KI-Agenten schrittweise zu verfeinern und seine Leistungsfähigkeit in 

zunehmend komplexen Szenarien zu testen. Die Ergebnisse aus den Labor- und Feldtests lieferten wertvolle 

Erkenntnisse für die Implementierung von KI-gestützten Optimierungen in NWG, insbesondere unter Berück-

sichtigung der Infrastruktur des iMSys(+). 
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9 Ergebnisse und Diskussion 

Das folgende Kapitel bietet eine umfassende Darstellung der zentralen Resultate des Projekts und deren Be-

wertung im Hinblick auf die gesteckten Ziele. Im ersten Teil des Kapitels wird die Erfassung der Messwerte 

aus dem iMSys sowie deren Übermittlung über die GLT bzw. ein KI-Edge-Device und das Backend des MSB 

untersucht. Dabei steht die technische Umsetzung der Datenflüsse im Vordergrund. 

Im zweiten Abschnitt wird die Auswertung des Feldtests zum intelligenten Laden von Elektrofahrzeugen be-

schrieben. Hierbei liegt der Fokus auf der Nutzung dynamischer Preissignale in Kombination mit netzorien-

tierter Steuerung, um die Potenziale einer Lastverschiebung im realen Betrieb zu analysieren. 

Abschließend widmet sich das Kapitel den Ergebnissen aus der KI-Trainingsumgebung, insbesondere der Op-

timierung der Wärmeversorgung. Dabei werden Zielkonflikte in der Belohnungsfunktion untersucht, um ein 

ausgewogenes Verhältnis zwischen Effizienz, Komfort und Kosten zu erreichen. Die Diskussion ordnet die Er-

gebnisse in den Gesamtkontext ein und beleuchtet sowohl Chancen als auch Herausforderungen für eine 

breitere Anwendung der entwickelten Ansätze. 

9.1 Messwerterfassung aus dem intelligenten Messystem 

Die iMSys haben während der Testzeiträume verschiedene Metering-Leistungen erbracht. Zum einen wurde 

ein maschinenlesbarer Abruf von Live-Zählerständen am HAN-Port des zugehörigen SMGWs ermöglicht. Zum 

anderen erfolgte die Tarifierung gemäß TAF 7, bei der die Zählerstandszeitreihen mit einer Auflösung von 

15 Minuten über einen Zeitraum von 24 Stunden erfasst und anschließend am Folgetag an das Meter-Data-

Management-System (MDM) des wMSB Teleseo übermittelt wurden. 

Das KI-EMS auf dem Edge-Device hat die Live-Zählerstände aus dem Wandlerzähler an der Wärmepumpe 

über die HAN-Schnittstelle des SMGW alle 30 Sekunden abgerufen, um den elektrischen Verbrauch der Wär-

mepumpe als Beobachtungsgröße zu verfolgen. Zusätzlich wurde die thermische Leistung der Wärmepumpe 

über einen Wärmemengenzähler erfasst, der in der GLT integriert ist und von dort via BACnet ausgelesen 

wurde. Ein Vergleich der Verläufe von elektrischer und thermischer Leistung zeigt eine hohe Übereinstim-

mung. Besonders deutlich ist das Takten zwischen dem Betrieb der ersten Verdichterstufe (ein Verdichter ak-

tiv) und der zweiten Verdichterstufe (beide Verdichter parallel in Betrieb) erkennbar (siehe Abbildung 18). 
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Abbildung 18: Gegenüberstellung der über die HAN-Schnittstelle des SMGW erfassten elektrischen Wirkleistung und der gemessenen 

thermischen Leistung der Wärmepumpe (Quelle: Eigene Abbildung) 

Des Weiteren wurde eine TAF 7-Tarifierung für die Messstellen an der Wärmepumpe sowie an den Ladesäu-

len 1 und 2 vorgenommen. Abbildung 19 zeigt den Lastgang der Wärmepumpe zwischen dem 24. und 

27. Februar 2025. Wie erwartet ist die Granularität der Daten im 15-Minuten-Raster recht grob. Diese Granula-

rität ist jedoch ausreichend für die Verwendung der Daten zu Abrechnungs- und Bilanzierungszwecken. Der 

Lastgang in Abbildung 19 zeigt die zweistufige Leistungsaufnahme der Wärmepumpe. Der Betrieb der zwei-

ten Stufe erfolgt häufig nur teilweise in einem 15-Minuten-Intervall, weshalb die entsprechenden Mittelwerte 

häufig zwischen den Leistungen der ersten und zweiten Stufe liegen. 

Die quantitative Analyse der TAF 7-Daten ergab für die Wärmepumpe des Pilotgebäudes einen Verbrauch von 

etwa 34.600 kWh innerhalb eines 30-Tage-Zeitraums im Januar und Februar. Hochgerechnet entspricht dies 

einem Jahresverbrauch von über 100.000 kWh. Gemäß den Anforderungen des Moduls 3 („zeitvariable Netz-

entgelte“) nach Beschluss BK8-22/010-A der BNetzA – detailliert erläutert in Kapitel 4.2.1 – darf der jährliche 

Verbrauch einer steuerbaren Verbrauchseinrichtung den Grenzwert von 100.000 kWh pro Jahr nicht über-

schreiten. Da dieser Grenzwert im vorliegenden Fall überschritten wird, ist eine operative Inanspruchnahme 

des Moduls 3 für die Wärmepumpe des Pilotgebäudes nach aktuellem Stand ausgeschlossen. Eigentümerin-

nen und Eigentümern von NWG mit vergleichbaren Wärmepumpenanlagen wird empfohlen, die individuelle 

Anwendbarkeit des Moduls 3 gemäß §14a EnWG im Vorfeld regulatorisch prüfen zu lassen. Im weiteren Pro-

jektverlauf wurde §14a EnWG dennoch angewendet, um die netzorientierten Steuersignale sowie zeitvari-

able Netzentgelte zu erproben. 

Für die Ladestationen des Pilotgebäudes wurde hingegen festgestellt, dass die Voraussetzungen für die Nut-

zung des Moduls 3 erfüllt wären, da ihr jährlicher Verbrauch nach eigenen Abschätzungen unterhalb der fest-

gelegten Grenze liegen würde. 
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Abbildung 19: Lastprofil der Wärmepumpe auf Basis von TAF 7-Daten aus dem Meter-Data-Management (MDM) des wMSB Teleseo im 

Zeitraum 24.–27.02.2025 mit 15-Minuten-Auflösung (Quelle: Eigene Abbildung) 

9.2 Auswertung der Feldtests mit Schwerpunkt intelligentes Laden 

Im Rahmen der Feldtests wurden zunächst eine Reihe von Vortests durchgeführt, um das spezifische Verhal-

ten der eingesetzten Ladesäulen und angeschlossenen Elektrofahrzeuge detailliert zu analysieren. Ziel dieser 

Vortests war es, potenzielle Auffälligkeiten und technische Restriktionen zu identifizieren, die für das Training 

und die Optimierung des KI-basierten Steuerungsalgorithmus berücksichtigt werden mussten. Aufbauend 

auf diesen Erkenntnissen erfolgten die eigentlichen Feldtests in zwei Ausbaustufen: 1) intelligentes Laden 

ausschließlich Netzbezug anhand dynamischer Preissignale und 2) zusätzliche Berücksichtigung der PV-An-

lage und §14a EnWG-Steuersignalen. 

Pre-Tests: 

Die Ergebnisse des ersten Vortests mit Fahrzeug A, in dem das Ladeverhalten bei variabler Soll-Ladeleistung 

untersucht wurde, sind in Abbildung 20 dargestellt. Dort zeigt sich ein differenziertes Verhalten: Das Fahr-

zeug akzeptiert beispielsweise eine Ladeleistung von 0 kW, wodurch der Ladevorgang vollständig unterbro-

chen wird (11:42 Uhr). Die tatsächlich abgerufene Ladeleistung bleibt stets um 0,3 bis 0,7 kW unterhalb der 

eingestellten Maximalwerte. Überschreitet die Soll-Leistung den Schwellenwert von 4,14 kW, wird der Lade-

vorgang automatisch wieder aufgenommen (11:43 Uhr). Im Bereich zwischen 4,14 kW und 11 kW lässt sich 

die Ladeleistung zudem in relativ feinen Abstufungen von etwa 1 kW regulieren (11:27–11:35 Uhr). Das ur-

sprüngliche KI-Trainingsmodell ging von einer stufenlosen Ansteuerung aus und wurde nach diesen Be-

obachtungen entsprechend angepasst. Zu beachten ist außerdem eine gewisse Latenz zwischen Soll- und 

Ist-Wert, die auf die zeitliche Auflösung von 30 Sekunden in der Datenerfassung zurückzuführen ist. An dieser 

Stelle konnte zudem bereits eine initiale Ladespitze um 11:14 Uhr beobachtet werden. Die Gründe hierfür 

sind im Abschnitt „Ausbaustufe 1: Preisoptimiertes Laden” mit Verweis auf Abbildung 22 erläutert. 
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Abbildung 20: Steuerungstest mit einem realen E-Fahrzeug (Fahrzeug A) (Quelle: Eigene Abbildung) 

Die Ergebnisse des zweiten Tests mit Fahrzeug B, der die Steuerbarkeit der Ladeleistung bei diesem Fahr-

zeugmodell untersuchte, sind in Abbildung 21 visualisiert. Dabei zeigt sich, dass die tatsächliche Ladeleis-

tung – ähnlich wie bei Fahrzeug A – stets unterhalb der eingestellten Maximalwerte bleibt, wenn auch in ge-

ringerem Ausmaß. Im Unterschied zu Fahrzeug A weist Fahrzeug B jedoch eine deutlich höhere Latenz auf: 

Die vollständige Aktivierung des Ladevorgangs erfolgt erst nach einer Verzögerung von mehr als 30 Sekun-

den. Die Leistungssteuerung arbeitet grundsätzlich effektiv, allerdings startet der Ladevorgang erst ab einer 

Soll-Mindestleistung von 4,5 kW. Wird dieser Wert unterschritten, erfolgt eine Abregelung auf 0 kW (8:46 Uhr). 

Dieser Aspekt ist insbesondere im Hinblick auf mögliche netzorientierte Steuersignale im Kontext von §14a 

EnWG relevant.  

 

Abbildung 21: Vor-Test mit verschiedenen Steuersignalstufen mit einem weiteren E-Fahrzeug (Fahrzeug B) (Quelle: Eigene Abbildung) 
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Diese Vortests lieferten wichtige Erkenntnisse über das Ladeverhalten verschiedener Elektrofahrzeugmodelle 

und bildeten eine solide Grundlage für die Weiterentwicklung und Optimierung des KI-basierten Steuerungs-

algorithmus für das intelligente Laden von E-Fahrzeugen. Die gewonnenen Daten zum realen Fahrzeugver-

halten ermöglichten eine präzisere Anpassung der Steuerungsstrategien an die spezifischen Eigenschaften 

unterschiedlicher E-Fahrzeugtypen. 

Ausbaustufe 1: Preisoptimiertes Laden 

Nach den erfolgreichen Vortests wurde die erste Ausbaustufe des Feldtests implementiert, die sich auf preis-

optimiertes Laden bei ausschließlichem Netzbezug konzentrierte (vgl. Abbildung 22). In dieser Phase erfolgte 

die Optimierung durch die KI-Komponenten auf dem Edge-Device ausschließlich basierend auf dem dynami-

schen Stromtarif, der von Ostrom bereitgestellt wurde und um das angesetzte variable Netzentgelt ergänzt 

wurde. Abbildung 10 auf S. 35 visualisiert die Summe beider Preiskomponenten als dynamischen Strom-

preis. Eine mögliche netzorientierte Steuerung nach §14a EnWG findet erst in Ausbaustufe 2 Anwendung.  

 

Abbildung 22: Erster Feldtest des KI-gestützten Steuerungsalgorithmus in der initialen Ausbaustufe des preisoptimierten Ladens von 

Elektrofahrzeugen (Ladezeitfenster ca. 11:45–15:00 Uhr) auf Basis dynamischer Strompreissignale am Pilotstandort 

(Quelle: Eigene Abbildung) 

Die Ergebnisse dieser Ausbaustufe zeigen deutliche Fortschritte in Richtung eines kosteneffizienten Ladevor-

gangs. Das Elektrofahrzeug lädt vorwiegend zu Zeiten günstiger Preise, was die Effektivität des KI-gesteuer-

ten Algorithmus unterstreicht. Auffällig ist jedoch, dass der KI-Agent den exakten Ladebedarf des Fahrzeugs 

nicht kennt. Dies manifestiert sich darin, dass zum Zeitpunkt der Trennung von der Wallbox keine typische 

Abregelung der Ladeleistung im Sinne eines sukzessiven Abflachens der Ladekurve erkennbar ist, wie sie bei 

Annäherung an eine Vollladung durch das Batteriemanagementsystem (BMS) des Fahrzeugs normalerweise 
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zu beobachten wäre. Stattdessen endet der Ladevorgang abrupt, sobald das von der KI vorgegebene Ende 

des Ladezeitfensters erreicht ist. Dies deutet darauf hin, dass der Algorithmus im Training von einer kleineren 

Batteriekapazität ausgegangen ist als tatsächlich im Fahrzeug vorhanden war. Das Fahrzeug hätte demnach 

bei entsprechender Freigabe noch weitergeladen bzw. früher damit begonnen und dabei den für Lithium-

Ionen-Batterien typischen Tapering-Effekt15 gezeigt. Dennoch konnte das Fahrzeug mehr als 35 kWh bezie-

hen, was auf ein umfangreiches Laden zu günstigen Tarifzeiten hindeutet. 

In der ersten Ausbaustufe zeigte sich ein zentrales Optimierungspotenzial an der Schnittstelle zwischen EMS 

und Ladesäule. Das vom KI-EMS vorgegebene Ladezeitfenster (entspricht der Zeitreihe „Ladesäule #1 Elektri-

sche Wirkleistung SOLL“) wird in 15-Minuten-Intervallen aktualisiert, wobei die Ladesäule diese Leistungsvor-

gabe nur bei aktivem Ladevorgang akzeptiert. Dadurch lädt das Fahrzeug nach dem Einstecken zunächst mit 

voller Leistung bis zum Ablauf der ersten vollen Viertelstunde, bevor die Begrenzung durch das EMS greift. 

Dieses Verhalten ist in Abbildung 22 deutlich an der ausgeprägten Lastspitze nach Fahrzeugankunft zu erken-

nen (8:15 Uhr). Die Beobachtung verdeutlicht die Notwendigkeit, die Kommunikations- und Steuerungsinter-

valle zwischen EMS und Ladeinfrastruktur besser zu synchronisieren, um unerwünschte Lastspitzen zu ver-

meiden. 

Die erste Ausbaustufe demonstriert somit nicht nur die grundsätzliche Funktionsfähigkeit des KI-basierten 

Steuerungsalgorithmus für preisoptimiertes Laden, sondern zeigt auch, dass eine realitätsnähere und nut-

zerorientierte Optimierung durch die Integration fahrzeugspezifischer Informationen wie State of Charge 

(SoC), tatsächlicher Batteriekapazität und Ladebedarf möglich wäre. 

Ausbaustufe 2: Preis- und PV-optimiertes Laden mit netzorientiertem Steuereingriff 

In der Ausbaustufe 2 wurde das intelligente Laden von E-Kfz unter Berücksichtigung sowohl dynamischer 

Strompreise als auch der lokalen PV-Erzeugung sowie netzorientierter Steuersignale gemäß §14a EnWG un-

tersucht. Abbildung 23 zeigt das Ladeverhalten eines E-Kfz an einem exemplarischen Tag im Feldtestmonat 

Februar. Das Fahrzeug wird vorrangig in Zeitfenstern geladen, in denen die PV-Anlage eine höhere Leistung 

erzeugt als für den Ladevorgang benötigt wird. Diese Ladefenster liegen im betrachteten Zeitraum überwie-

gend zwischen 9:30 Uhr und 16:00 Uhr und spiegeln damit typische PV-Erzeugungsprofile in den Wintermo-

naten wider. 

Auffällig ist zudem, dass diese Zeiträume größtenteils mit den Phasen günstiger Strompreise korrelieren, die 

an den jeweiligen Testtagen meist zwischen 11:00 Uhr und 15:00 Uhr lagen. Für den KI-Agenten ergibt sich 

daraus die Möglichkeit, das Lademanagement sowohl an den wirtschaftlichen Rahmenbedingungen des 

Strommarkts als auch an der lokalen Erzeugung auszurichten. Da bei ausreichender Sonneneinstrahlung aus 

Sicht des KI-Agenten die PV-Erzeugung als „kostenloser“ Strombezug bewertet wird, verliert der dynamische 

Strompreis in diesen Zeitfenstern an Relevanz. An Tagen mit geringer PV-Erzeugung gewinnt hingegen der 

Strompreis wieder an Relevanz. Eine Rückkopplung des Steueralgorithmus mit dem tatsächlichen Strombe-

zug am Netzanschlusspunkt zur Optimierung des Eigenverbrauchs des gesamten NWG wäre in diesem Kon-

text sinnvoll gewesen, wurde im Rahmen des Projekts jedoch nicht umgesetzt. 

 

15 Der sogenannte Tapering-Effekt beschreibt das typische Verhalten, dass die Ladeleistung eines Elektrofahrzeugs gegen Ende des Ladevorgangs deutlich 

abnimmt, um die Batterie zu schonen und eine Überladung zu vermeiden. 
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Abbildung 23: Feldtest des intelligenten Ladens in Ausbaustufe 2: Einsatz eines KI-Agenten für ein E-Kfz unter Einbindung eines PV-Emu-

lators und netzorientierter Steuerung nach §14a EnWG – der KI-Agent reagiert nicht auf das übermittelte Steuersignal 

(Quelle: Eigene Abbildung). 

Im Hinblick auf die netzorientierte Steuerung wurde der KI-Agent im Trainingsprozess gezielt mit Steuersig-

nalen nach §14a EnWG konfrontiert, um die Reaktionsfähigkeit auf kurzfristige netzseitige Anforderungen zu 

überprüfen. Im Feldtest zeigte sich jedoch, dass der KI-Agent nur in Einzelfällen proaktiv auf Ad-hoc-Signale 

des Netzbetreibers reagierte. Siehe dazu auch die Nicht-Reaktion des KI-Algorithmus auf die netzorientierte 

Steuerung in Abbildung 23. Um die Konformität mit §14a EnWG, die zugehörige Nachweispflicht sowie die 

Praxistauglichkeit des Systems sicherzustellen, wurde das EMS im weiteren Projektverlauf um eine ergän-

zende regelbasierte Logik erweitert. Diese Logik gewährleistet, dass bei Vorliegen eines §14a EnWG-Signals 

die maximal zulässige Ladeleistung innerhalb des jeweiligen Ladezeitfensters je Ladesäule automatisch re-

duziert wird. Dadurch konnte eine verlässliche und gesetzeskonforme Umsetzung netzseitiger Steueranfor-

derungen sichergestellt werden, ohne die grundlegenden Optimierungsziele des KI-basierten Lademanage-

ments zu beeinträchtigen. 

Bei der detaillierten Auswertung der Ladevorgänge zeigte sich zudem, dass einzelne Ladevorgänge teilweise 

zu früh initiiert wurden. Infolgedessen konnten nicht immer die günstigsten Strompreisphasen beziehungs-

weise die Spitzen der PV-Erzeugung optimal ausgenutzt werden. Diese suboptimale Steuerung ist darauf zu-

rückzuführen, dass der KI-Agent von einem fest hinterlegten Ladebedarf ausgeht, während der tatsächliche 

Ladebedarf des Fahrzeugs im Realbetrieb variieren kann. Die daraus resultierende Diskrepanz führt dazu, 

dass die Ladestrategie nicht immer optimal an die realen Anforderungen angepasst ist. Eine potenzielle Lö-

sung für diese Herausforderung wäre die Integration des jeweils aktuellen Ladebedarfs des Fahrzeugs als zu-

sätzliche Entscheidungsgrundlage für den KI-Agenten. 
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Abbildung 24: Feldtest des intelligenten Ladens in Ausbaustufe 2: Ergänzung eines regelbasierten Algorithmus für ein E-Kfz unter Einbin-

dung eines PV-Emulators und netzorientierter Steuerung nach §14a EnWG – erfolgreiche Leistungsreduktion auf 4,2 kW 

bei Vorliegen eines Steuersignals (Quelle: Eigene Abbildung). 

Neben den bereits beschriebenen Herausforderungen beim Ladezeitpunkt zeigte sich auch beim Leistungs-

verhalten zu Beginn eines jeden Ladevorgangs Optimierungspotenzial. Wie bereits in der ersten Ausbaustufe 

beobachtet, trat direkt nach dem Anstecken des Fahrzeugs ein initial erhöhter Leistungsabruf der Ladesäule 

auf. Diese Problematik ist in Abbildung 22 an der ausgeprägten Lastspitze nach Fahrzeugankunft deutlich 

erkennbar. Im weiteren Projektverlauf wurde das System gezielt weiterentwickelt. Durch Anpassungen am 

OCPP-Kommunikationstreiber und die Synchronisierung der Steuerbefehle mit dem Verbindungsaufbau 

konnte dieses Verhalten erfolgreich behoben werden. Die Wirksamkeit dieser Optimierung zeigt sich in den 

späteren Feldtests, insbesondere in Abbildung 24. Dort ist aufgrund der Systemanpassung nur noch eine 

marginale Lastspitze aufgrund kommunikationstechnischer Latenz erkennbar. Zudem wurde in dieser Aus-

baustufe eine regelbasierte Logik zur Umsetzung der §14a EnWG-Vorgaben integriert, wodurch im Aktivie-

rungsfall eine direkte Leistungsbegrenzung auf 4,2 kW erfolgt. 

Bei der Analyse des Steuerungsverhaltens zeigte sich, dass der KI-Agent überwiegend ein binäres Schaltver-

halten bevorzugt: Er gibt entweder die volle Soll-Ladeleistung je Ladesäule von 11 kW frei oder setzt die La-

deleistung auf 0 kW. Die Entscheidung für dieses Verhalten wurde im Trainingsprozess vom KI-Agenten selbst 

getroffen. In einzelnen Situationen ist zwar eine kurzzeitige Anpassung der Ladeleistung – also eine feinere 

Abstufung zwischen 0 und 11 kW – erkennbar, dies stellt jedoch die Ausnahme dar und ist nicht als Regelbe-

trieb zu werten. Im Fall eines §14a EnWG-Steuersignals wird – wie in Abbildung 24 sichtbar – regelbasiert ein 

Leistungslimit von 4,2 kW pro Ladesäule gesetzt, das unabhängig von der KI-Entscheidung greift. 

Zu beachten ist in Abbildung 24 außerdem, dass die Ladesäule zwar eine maximale Ladefreigabe von 11 kW 

erhielt, das eingesetzte Fahrzeug technisch jedoch nur mit maximal 7,4 kW (zweiphasig) laden konnte. Die 



   

 

 61 

tatsächlich abgerufene Ladeleistung lag somit unter dem durch das EMS freigegebenen Wert und wurde 

durch die fahrzeugseitige Begrenzung bestimmt. 

 

Abbildung 25: Nächtliches Ladefenster zu günstigen Strompreisen: Der KI-Agent identifiziert eigenständig Zeiträume niedriger Strom-

preise, weist das Ladefenster jedoch mit erkennbaren Unterbrechungen und nicht durchgängig aus (Quelle: Eigene Abbil-

dung) 

Im Rahmen der Feldtests zeigte sich in den Nachtstunden eine interessante Eigenschaft des KI-Agenten: Ob-

wohl das nächtliche Laden im ursprünglichen Trainingsdatensatz als auch in den Feldtest nicht explizit vor-

gesehen war und die KI hierfür keine spezifische Optimierungsstrategie erlernen sollte, übertrug der Algorith-

mus die im Tagesverlauf gewonnenen Erkenntnisse über günstige Strompreise und Ladezeiten eigenständig 

auf die Nachtstunden. Wie in Abbildung 25 dargestellt, wurden so auch in der Nacht Ladefenster zu niedrigen 

Preisen identifiziert und genutzt. Allerdings erfolgte dies mit Unterbrechungen im Ladeverlauf und einer ge-

ringeren Präzision bei der Ausnutzung der niedrigsten Strompreise. Dies ist vermutlich darauf zurückzufüh-

ren, dass der KI-Agent während des Trainings nur Fahrzeuge tagsüber beobachtet hat und dementsprechend 

nur zu diesen Zeiten mit Belohnungen konditioniert wurde. Dieses Verhalten verdeutlicht dennoch die Adap-

tionsfähigkeit des KI-Agenten, der in der Lage ist, sein Steuerungsverhalten flexibel auf bislang unbekannte 

Situationen zu übertragen. 

Diese zweite Ausbaustufe des Feldtests demonstriert die fortschreitende Entwicklung und Verfeinerung des 

KI-basierten Lademanagements. Die Integration von PV-Leistung und die Berücksichtigung von §14a-Signa-

len stellen wichtige Schritte in Richtung eines ganzheitlichen, d. h. markt- und netzorientierten, Ladekon-

zepts dar. Allerdings zeigt sich, dass das volle Potenzial der KI erst durch eine sektorübergreifende Optimie-

rung ausgeschöpft werden kann. Während die wirtschaftlichen Vorteile des intelligenten Ladens auf Basis 

dynamischer Strompreis-Signale auch mit regelbasierten Ansätzen zu erschließen sind, ermöglicht die KI 

eine komplexere, sektorübergreifende Optimierung. Für zukünftige Untersuchungen bietet sich insbesondere 
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die Einbeziehung der Wärmeversorgung und Wärmepumpen an, die im KI-Training bereits analysiert wurden, 

aber im Rahmen der Feldtests nicht mehr erprobt werden konnten. 

9.3 Analysen aus dem KI-Training mit Schwerpunkt Wärmeversorgung 

In diesem Abschnitt werden die Ergebnisse des KI-basierten Steuerungsalgorithmus der Ausbaustufe 3 für die 

simultane Regelung von Ladeinfrastruktur und Wärmeversorgung im Pilotgebäude analysiert. Ziel ist es, die 

Übertragbarkeit des erlernten Steuerungsverhaltens auf bislang unbekannte Situationen zu bewerten und 

die Robustheit des Agenten unter unterschiedlichen Betriebsbedingungen zu untersuchen. Da für die finale 

Ausbaustufe keine weiteren Feldtests mehr durchgeführt werden konnten, erfolgt die Bewertung innerhalb 

der KI-Trainingsumgebung. Im Mittelpunkt steht die Validierung des trainierten Agenten mit Datensätzen, die 

überwiegend nicht Teil des Trainings waren. Dieser Ansatz ermöglicht eine objektive Beurteilung der Genera-

lisierungsfähigkeit des Algorithmus und entspricht methodisch der in der KI-Forschung etablierten Trennung 

von Trainings- und Testdaten. Auf eine ergänzende Analyse zur Nutzung der PV-Eigenstromerzeugung wurde 

verzichtet, das heißt, die PV-Anlage wurde deaktiviert, um die Handlungen des KI-Agenten besser nachvoll-

ziehen zu können. 

9.3.1 Datenbasis und Validierungsstrategie 

Die verwendeten Datensätze stammen aus einer durchgängigen Messung der Wärmeversorgung über eine 

Heizperiode im Winterhalbjahr 2022/2023 am Pilotstandort. Für das Training des KI-Agenten wurden histori-

sche Betriebsdaten aus mehreren Monaten herangezogen. Die Validierung erfolgte anhand ausgewählter Mo-

nate und Tage, um verschiedene saisonale und betriebliche Bedingungen abzubilden. Die folgende Tabelle 

gibt eine Übersicht über die verwendeten Datensätze: 

 

Zeitraum Verwendung der Messdaten 

Dezember Validierung 

Januar Training 

Februar Training & Validierung 

März Training 

April Training 

Mai Validierung 

Tabelle 2: Überblick über die Verwendung der historischen Datensätze im Training und in der Validierung 

Die Februardaten wurden sowohl im Training als auch in der Validierung eingesetzt, um gezielt zu untersu-

chen, wie der Agent unter realen Winterbedingungen mit hohem Heizbedarf agiert. Dadurch lässt sich bewer-

ten, ob spezifische Herausforderungen – wie physikalische Systemgrenzen der Wärmepumpe bei niedrigen 

Außentemperaturen – bereits im Trainingsprozess erkennbar werden oder erst im Testbetrieb auftreten. So 

kann differenziert beurteilt werden, ob etwaige Leistungsdefizite auf das Agentenverhalten oder auf unver-

meidbare technische Restriktionen zurückzuführen sind. 
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Ergänzende Erläuterungen zur Analyse 

Für ein besseres Verständnis der nachfolgenden Tabellen und Abbildungen werden im Folgenden zentrale 

Aspekte der Steuerungslogik und Systemgrenzen des KI-Agenten zusammengefasst. Teilweise handelt es sich 

um Wiederholungen aus den vorangegangenen Kapiteln, um die Einordnung der Ergebnisse in diesem Ab-

schnitt zu erleichtern. 

• Wärmepumpenbetrieb: Die Wärmepumpe übernimmt die Grundlast der Gebäudeheizung über den 

Pufferspeicher. Bei zusätzlichem Wärmebedarf wird der Gaskessel unterstützend zugeschaltet (siehe 

Kapitel 7.1.3). 

• Indirekte Steuerung: Da eine direkte Ansteuerung über die GLT technisch nicht möglich war, erfolgt 

die Steuerung der Wärmeerzeuger indirekt über die Anpassung der Soll-Vorlauftemperatur des Puf-

ferspeichers und der Soll-Innentemperatur. Die beiden Verdichterstufen der Wärmepumpe verfügen 

jeweils über eine thermische Nennleistung von etwa 110 kW und sind in den Abbildungen in der Y-

Achse unter „Heizsystem-Level” zu finden. Dabei entspricht Level 1 thermisch 110 kW, während Le-

vel 2 thermisch 220 kW zuzuordnen sind. Die tatsächlichen Leistungswerte können in der Praxis ge-

ringfügig darunter liegen (siehe Kapitel 7.1.3). 

• Einfluss der Sollwerte: Der gewählte Sollwert für die Innentemperatur beeinflusst die Heizintensität 

und damit die Entladegeschwindigkeit des Pufferspeichers. Durch die Kombination eines reduzier-

ten Innentemperatur-Sollwerts mit einer erhöhten Pufferspeicher-Solltemperatur strebt der Agent 

eine möglichst wirtschaftliche Beheizung über die Wärmepumpe an, um den Rückgriff auf den Gas-

kessel zu begrenzen. 

• Zielhierarchie der Optimierung: Die Belohnungsfunktion des KI-basierten Steuerungsalgorithmus 

bildet die zentrale Grundlage der Steuerungsstrategie und integriert gezielt die thermodynamischen 

Eigenschaften des Gesamtsystems sowie ökonomische Zielgrößen. Die Zielhierarchie der Optimie-

rung ist dabei klar strukturiert: An erster Stelle steht die Komfortsicherung durch Einhaltung der 

Raumtemperatur im definierten Komfortbereich. Nachgelagert erfolgt die Kostenoptimierung mit-

tels Nutzung günstiger Strompreise. Als drittes Ziel wird die Minimierung des Gaseinsatzes und da-

mit indirekt der CO₂-Emissionen adressiert (siehe Kapitel 7.3.2.). 

• Strompreis-Darstellung: Die Strompreise werden in den Analysen als Abweichung vom jeweiligen 

Tagesdurchschnittspreis dargestellt. Positive Werte signalisieren einen relativ teuren, negative 

Werte einen vergleichsweise günstigen Strombezug – entsprechend der Art, wie die Preissignale 

dem RL-Agenten präsentiert werden. 

• Physikalische Systemgrenzen: Unabhängig vom Verhalten des KI-Agenten können physikalische 

Grenzen – insbesondere eine zu geringe Heizleistung der Wärmepumpe bei sehr niedrigen Außen-

temperaturen – dazu führen, dass der Wärmebedarf nicht vollständig gedeckt werden kann. In die-

sen Fällen wird der Gaskessel zur Sicherstellung des Komforts zugeschaltet, auch wenn die Wärme-

pumpe noch aktiv ist. 

Diese Rahmenbedingungen und Steuerungsprinzipien sind für die Interpretation der in den folgenden Tabel-

len und Abbildungen dargestellten Ergebnisse essenziell. 
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9.3.2 Betriebsverhalten in der Übergangszeit 

Die Analyse des KI-gesteuerten Betriebs im Monat Mai (siehe Abbildung 26) zeigt das Verhalten des Systems 

unter moderaten klimatischen Bedingungen, mit nächtlichen Außentemperaturen im niedrigen einstelligen 

Bereich und Tageshöchstwerten um 20 °C. Die Wärmepumpe wird dabei zweistufig betrieben: Die erste bzw. 

zweite Stufe wird aktiviert, sobald die untere Grenze der Pufferspeichertemperatur im Vorlauf für eine be-

stimmte Zeit unterschritten wird, und deaktiviert, wenn die obere Grenze erreicht ist. In Abbildung 26 für die 

Beispieltage im Mai ist jedoch lediglich die Aktivierung der ersten Verdichterstufe erforderlich. Diese Tempe-

raturgrenzen sind abhängig von der Außentemperatur und werden durch eine Heizkennlinie vorgegeben. Die 

indirekte Ansteuerung der Wärmepumpe erfolgt über die Anpassung dieser Temperaturgrenzen im Puffer-

speicher, was in den nachfolgenden Abbildungen als „Delta-Soll-Vorlauf-Temperatur“ dargestellt ist. 

 

Abbildung 26: Repräsentative Beispieltage aus dem Monat Mai für den Heizbetrieb des Pilotgebäudes in der KI-Trainingsumgebung. Das 

Heizsystem-Level (Y-Achse) spiegelt dabei sowohl die Betriebsstufe der Wärmepumpe als auch die Delta-Soll-Vorlauftem-

peratur in °C wider. (Quelle: Eigene Abbildung) 

Ein weiteres Steuerungsinstrument ist die Anpassung der Soll-Innentemperatur, die in Abbildung 26 bei-

spielsweise zwischen 0 und 2 Uhr als von der KI vorgeschlagene Nachtabsenkung zu erkennen ist. Auffällig 

ist, dass die Komforttemperatur im gesamten Zeitraum eingehalten wurde (vgl. Tabelle 3). Die Häufigkeit der 

Gasnutzung lag im Mai bei lediglich 2,1 % (15,5 von 744 Stunden), was den Fokus des Agenten auf die Dekar-

bonisierung und die effiziente Nutzung der Wärmepumpe unterstreicht. In der Übergangszeit konnten durch 

den KI-Agenten zudem Einsparungen bei den Stromkosten im Vergleich zum jeweiligen Tagesdurchschnitts-

preis erzielt werden. Die netzdienliche Abregelung gemäß §14a EnWG wurde im Mai durch den Agenten in 

allen Fällen erfolgreich umgesetzt. 
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Allerdings erfolgte der Betrieb der Wärmepumpe nicht gezielt in Zeiten niedriger Strompreise. Vermutlich 

liegt dies daran, dass der Strombedarf im Mai vergleichsweise gering ist, wodurch die Belohnungskompo-

nenten für Energiepreise im RL-Algorithmus möglicherweise weniger stark ins Gewicht fallen als jene für 

Komforterhaltung oder die Reduzierung der Gasnutzung. Zudem wurde im Training bewusst ein sehr hoher 

Gaspreis von 30 ct/kWh angenommen, was dazu führen könnte, dass der Agent die Minimierung der Gasnut-

zung stärker priorisiert als die Anpassung des Wärmepumpenbetriebs an schwankende Strompreise. 

Während die KI-Steuerung im Bereich der Wärmeversorgung primär auf die Sicherstellung des Raumkom-

forts sowie die Reduzierung des Gasverbrauchs ausgerichtet ist, stehen bei der Ladeinfrastruktur insbeson-

dere die Optimierung der Ladezeiten und die Nutzung günstiger Stromtarife im Fokus. Wie den Kennzahlen in 

Tabelle 3 zu entnehmen ist, wurden im Mai 93,3 % der Fahrzeuge (42 von 45) vollständig geladen. Der durch-

schnittliche Ladefehlbedarf pro Fahrzeug (3 von 45) betrug durchschnittlich lediglich 1,8 kWh. Die Ergebnisse 

aus dem Monat Mai deuten auf eine grundsätzlich hohe Zuverlässigkeit der KI-basierten Ladeplanung unter 

moderaten klimatischen Bedingungen hin. Um die Generalisierbarkeit und Robustheit der Ergebnisse zu vali-

dieren, ist jedoch eine weitergehende Analyse über zusätzliche Monate erforderlich.  

Ladeverhalten im Training mit gleichzeitiger Wärmeversorgung im Monat Mai 

Das durchschnittliche zeitliche Ladeverhalten der Elektrofahrzeuge im Mai ist in Abbildung 27 dargestellt. Die 

KI verschiebt die Ladevorgänge überwiegend in Zeiträume mit niedrigen Strompreisen. Bei Ladestation 1, an 

der ein Fahrzeug mit größerem Batterie- und Ladebedarf hinterlegt ist, beginnt der Ladevorgang typischer-

weise früher und bleibt über einen längeren Zeitraum auf hohem Niveau. An Ladestation 2, die im Training 

mit einem Fahrzeug mit kleinerer Batterie und geringerem Ladebedarf belegt ist, verzögert sich der Ladebe-

ginn entsprechend der späteren Ankunftszeit, während die Ladeleistung aufgrund der geringeren Batterieka-

pazität früher abflacht.  

Die beobachteten Schwankungen in den Ladeprofilen könnten unter anderem auf Wechselwirkungen mit der 

Wärmeoptimierung zurückzuführen sein. Insbesondere in Stunden, in denen sowohl Heiz- als auch Ladebe-

darf besteht, kann die Aufsummierung der Belohnungskomponenten zu Zielkonflikten führen, die sich in der 

Verteilung der Ladevorgänge widerspiegeln. Es ist jedoch zu beachten, dass bei KI-basierten Steuerungsan-

sätzen – im Gegensatz zu klassischen regelbasierten Systemen – die Ursachen für spezifische Verhaltenswei-

sen nicht immer eindeutig nachvollziehbar sind. Die Blackbox-Problematik erschwert die direkte Interpreta-

tion der Entscheidungslogik, weshalb Ansätze der erklärbaren KI (engl. Explainable AI) zunehmend an Bedeu-

tung gewinnen, um das Verhalten solcher Systeme transparenter und überprüfbarer zu machen. 
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Abbildung 27: Analyse des Ladeverhaltens des Agenten im Monat Mai: durchschnittliche angefragte Energiemenge pro Ladesäule in Ab-

hängigkeit von Tageszeit und dem durchschnittlichen relativen dynamischen Strompreis. (Quelle: Eigene Abbildung) 

Zusammengefasst belegen die dargestellten Ergebnisse zwar die Leistungsfähigkeit des KI-Agenten im Früh-

jahr, sind jedoch maßgeblich von den moderaten Außentemperaturen dieses Zeitraums beeinflusst. Da die 

Temperaturen selten den Gefrierpunkt erreichen, ist eine dauerhaft hohe Wärmeerzeugung nicht erforder-

lich. Unter diesen günstigen Bedingungen kann der Agent sowohl die Heizungssteuerung als auch die Ladeo-

ptimierung effizient umsetzen. Im Winterbetrieb hingegen steigen die Anforderungen an eine zuverlässige 

Wärmeversorgung bei gleichzeitiger Einhaltung der Komfortbedingungen deutlich an. Insbesondere bei nied-

rigen Außentemperaturen treten verstärkte Zielkonflikte zwischen Komfort, Kosteneffizienz und CO₂-Reduk-

tion auf, da die Betriebsführung von Wärmepumpe und Gaskessel im Zusammenspiel mit dem dynamischen 

Strompreis erheblich komplexer wird. Diese Herausforderungen werden im folgenden Unterkapitel detailliert 

analysiert. 

9.3.3 Herausforderungen im Winterbetrieb 

Im Winterbetrieb treten die Zielkonflikte und systemischen Grenzen der KI-basierten Steuerungsstrategie be-

sonders deutlich zutage. Wie in den grundlegenden Erläuterungen zur Analyse beschrieben, erfolgt die Steu-

erung der Wärmeerzeuger ausschließlich indirekt über die Anpassung der Soll-Vorlauftemperatur des Puffer-

speichers und der Soll-Innentemperatur. Die Wärmepumpe übernimmt dabei die Grundlast der Gebäudehei-

zung, während der Gaskessel bei zusätzlichem Wärmebedarf unterstützend zugeschaltet wird. 

Die Auswertung der Betriebsdaten für den Beispielmonat Dezember zeigt, dass die praktische Umsetzung der 

angestrebten Strategie insbesondere bei niedrigen Außentemperaturen herausfordernd ist. Laut den Kenn-

zahlen in Tabelle 3 liegt in etwa 20 % der Stunden die Raumtemperatur außerhalb des definierten Komfort-

bereichs, während der Gaskessel in knapp zwei Dritteln der Stunden aktiv ist. 
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Kennzahl Mai Dezember Erläuterungen 

Wärmeversorgung 

Zeit außerhalb Kom-

forttemperatur 
0,0 %  

(0/744 h) 

≈20,2 % 

(150/744 h) 

Anteil der Stunden, in denen die Raumtempera-

tur außerhalb des Komfortbereichs lag 

Häufigkeit Gasnutzung 2,1 % 

(15,5/744 h) 

61,8 % 

(460/744 h) 

Anteil der Stunden, in denen der Gaskessel zur 

Wärmeerzeugung genutzt wurde 

Ladeinfrastruktur 

Vollständig geladene E-

Fahrzeuge 

93,3 % 

(42/45) 

27,3 %  

(9/33) 

Anteil der Fahrzeuge, die vollständig geladen 

wurden 

Durchschn. Ladefehlbe-

darf pro Fahrzeug 

1,8 kWh 25,51 kWh Durchschnittliche fehlende Ladung pro Fahr-

zeug (nutzbare Batteriekapazität 33,8 bzw. 

41,6 kWh) 

Energiekosten 

Tägl. Gaskosten 

(30 Ct/kWh) 

0,74 € 235,52 € Durchschnittliche tägliche Kosten durch Gas-

nutzung 

Stromkosten vs. Refe-

renz 

-5,23 €  

(eingespart) 

+9,19 €  

(zusätzlich) 

Tägliche Einsparung/Mehrkosten im Vergleich 

zur Referenz pro Tag (Tagesdurchschnittspreis) 

Netzdienlichkeit 

Erfolgreiche Abregelung 

§14a 

100 % 

(46/46) 

5,9 %  

(3/51) 

Anteil der erfolgreich umgesetzten netzdienli-

chen Steuersignale nach §14a EnWG16 

Tabelle 3: Saisonaler Kennzahlvergleich zwischen Mai und Dezember aus dem KI-Training auf Basis historischer Daten von 2023 

Abbildung 28 veranschaulicht das Systemverhalten an zwei ausgewählten Heiztagen im Dezember. Im obe-

ren Teil der Abbildung sind die Verläufe der Außen- und Innentemperaturen (Ist- und Sollwerte) dargestellt, 

im unteren Teil die thermische Leistung des Gaskessels (rot), die Betriebsstufen der Wärmepumpe (Stufe 1: 

110 kW, Stufe 2: 220 kW) sowie der relative Strompreis. Besonders deutlich werden die Limitierungen der ak-

tuellen Ansteuerbarkeit am 9. Dezember zwischen 11 und 12 Uhr: Hier senkt der KI-Agent gezielt die Vorlauf-

temperatur ab, um auf hohe Strompreise zu reagieren und den Betrieb der Wärmepumpe entsprechend zu 

steuern. Am Tagesende, ab etwa 17 Uhr, wird der Sollwert für die Innentemperatur abgesenkt, wodurch tem-

poräre Abweichungen vom Komfortbereich in Kauf genommen werden. Diese Maßnahmen zeigen, dass der 

Agent versucht, durch gezielte Anpassungen auf Preissignale und Komfortanforderungen zu reagieren. 

Die tatsächlichen Auswirkungen auf das Betriebsverhalten sind jedoch durch die geringe Speicherkapazität 

und die festgelegten Temperaturgrenzen zur Aktivierung der Wärmeerzeuger limitiert. Die Temperaturgren-

zen werden einerseits durch die außentemperaturabhängige Heizkurve definiert, andererseits lässt sich das 

Temperaturniveau über den Sollwert der Innentemperatur (Fußpunkt der Heizkurve) oder direkt über die 

Vorlauftemperatur steuern. Das in Abbildung 28 dargestellte Delta der Soll-Vorlauftemperatur entspricht ei-

ner Anpassung um ±2 °C. Das heißt, ein Heizsystem-Level von 2 entspricht einer Soll-Vorlauftemperaturerhö-

hung um +2 °C, ein Heizsystem-Level von -2 entsprechend einer Absenkung um -2 °C. 

 

16 Hinweis: Die Implementierung der regelbasierten Abregelung bei anliegendem §14a-Signal erfolgt erst lokal auf dem Edge-Device, nicht jedoch in der 

Trainingsumgebung. 
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Abbildung 28: Heizbetrieb des Pilotgebäudes an ausgewählten Dezembertagen, dargestellt mit Daten aus der KI-Trainingsumgebung. 

Das Heizsystem-Level (Y-Achse) bildet sowohl die aktuelle Betriebsstufe der Wärmepumpe als auch die Abweichung der 

Soll-Vorlauftemperatur in °C ab. (Quelle: Eigene Abbildung) 

Im Winterbetrieb arbeitet die Wärmepumpe überwiegend in der ersten Stufe, während die zweite Stufe nur 

kurzzeitig zugeschaltet wird. Auffällig ist, dass die Zuschaltung der Gasthermen bereits erfolgt, wenn die Wär-

mepumpe in der ersten Stufe nicht ausreicht, um den Pufferspeicher auf Solltemperatur zu halten. In Abbil-

dung 28 sind wiederholt Taktungen zu erkennen, bei denen die Gastherme auch bei niedrigen Strompreisen 

aktiviert wird oder die Wärmepumpe kurzzeitig auf die zweite Stufe schaltet, obwohl der Strompreis hoch ist. 

Das gezielte Abschalten einzelner Wärmepumpenstufen zur Kostenoptimierung, insbesondere während 

Hochpreisphasen, konnte bislang nur ansatzweise und nicht kontinuierlich beobachtet werden. Dies ist auf 

die Priorisierung von Komfort gegenüber Kosten in der Belohnungsfunktion zurückzuführen (vgl. Kapi-

tel 7.3.2). 

Insgesamt zeigt die Analyse, dass die indirekte Steuerung über Sollwertanpassungen und die physikalischen 

Systemgrenzen, insbesondere bei niedrigen Außentemperaturen und begrenzter Speicherkapazität, die Fle-

xibilität des Systems im Winterbetrieb einschränken. Die daraus resultierenden Zielkonflikte zwischen Kom-

fort, Kosten und Dekarbonisierung spiegeln sich in den Betriebsdaten und den dargestellten Zeitverläufen 

deutlich wider. 

9.3.4 Limitierungen in der Optimierung 

Im Vergleich der Monate Mai und Dezember (vgl. Tabelle 3) wird deutlich, dass der KI-Agent unter moderaten 

klimatischen Bedingungen (wie im Mai) weitgehend zuverlässig arbeitet: Die Komforttemperaturen werden 

nahezu durchgehend eingehalten und der Gasverbrauch bleibt gering, da die Wärmepumpe ausreichend 
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Leistung bereitstellen kann. Die Betriebsdaten zeigen, dass der Agent in dieser Phase flexibel auf Preissignale 

reagieren und durch gezielte Nachtabsenkungen sowie Aufheizstrategien den Betrieb optimieren kann. 

Mit sinkenden Außentemperaturen im Dezember verschieben sich jedoch die Systemgrenzen. Der Gefrier-

punkt markiert eine kritische Schwelle: Bei anhaltenden Minusgraden reicht die Wärmepumpenleistung 

nicht mehr aus, um das Gebäude ohne signifikanten Gaseinsatz zu beheizen. Die Analyse der Wintermonate 

zeigt, dass der Agent zwar versucht, durch Anpassung der Sollwerte für Innen- und Puffertemperatur gegen-

zusteuern, jedoch zunehmend an die Grenzen der Optimierbarkeit stößt. Besonders in Szenarien mit gleich-

zeitig hohen Energiepreisen, negativen Außentemperaturen und netzorientierter Steuerung (§14a EnWG) 

wird das Optimierungsproblem für den Agenten unlösbar: Die Priorität verschiebt sich dann auf die reine 

Temperaturerhaltung, was einen erhöhten Gaseinsatz zur Folge hat. Die Wärmepumpe reagiert zudem zu 

träge auf die indirekten Steuerungsanpassungen über die Temperaturregelung, um kurzfristig auf netzseitige 

Steuersingale reagieren zu können – lediglich gut 5 % aller §14a-Signale konnten vom KI-Algorithmus in der 

Trainingsumgebung erfolgreich umgesetzt werden (vgl. Tabelle 3). Für die durchgeführten Tests (siehe Kapi-

tel 9.2) wurde aus diesem Grund auf dem Edge-Computing-Device ein zusätzlicher regelbasierter Algorith-

mus ergänzt, um §14a-Steuersignale zuverlässig umzusetzen. 

Im Gegensatz zu Wärmepumpen mit SG-Ready-Standard, die eine direkte, flexible Ansteuerung ermöglichen, 

ist der betrachtete Ansatz im Pilot-NWG durch die indirekte Steuerung über Temperatur-Sollwertanpassun-

gen limitiert. Daher können §14a-Signale nur eingeschränkt berücksichtigt werden.17 Für NWG wäre die In-

tegration von SG-Ready oder vergleichbaren offenen, digital standardisierten Schnittstellen wünschenswert, 

wie es bereits die Praxis im Haushaltsbereich ist.  

Auch die Preisoptimierung wird unter winterlichen Bedingungen deutlich erschwert. Während im Mai ge-

zielte Preissignale zur Optimierung genutzt werden können, ist im Dezember ein nahezu durchgehender Be-

trieb der Wärmepumpe erforderlich, um Komfortverluste und hohe Gasverbräuche zu vermeiden. Dadurch 

bleibt das Potenzial zur Nutzung günstiger Strompreise weitgehend ungenutzt – gemäß Tabelle 1 sind sogar 

zusätzliche Stromkosten im Vergleich zu den Stromkosten bei einem vorliegenden Tagesdurchschnittspreis 

zu beobachten. 

Herrausforderungen im Belohnungssystem 

Ein zentrales Problem des eingesetzten sektorübergreifenden KI-Algorithmus liegt in der Verwendung fester 

Gewichtungen innerhalb der Belohnungsfunktion. Diese werden nicht an den jeweiligen Kontext, wie etwa 

Witterungsbedingungen oder schwankende Strompreise, angepasst. Diese starre Ausgestaltung erschwert 

eine situationsgerechte Priorisierung der verschiedenen Steuerungsziele. Besonders herausfordernd ist da-

bei die Kopplung der beiden Sektoren Wärmeversorgung und E-Mobilität: Entscheidungen in einem Bereich 

wirken sich unmittelbar auf den anderen aus, was zu komplexen Wechselwirkungen und schwer auflösbaren 

Zielkonflikten führt. 

Im Wärmesektor zeigt sich das Skalierungsproblem des KI-Algorithmus insbesondere dann, wenn die Wärme-

pumpe dauerhaft auf der höchsten Leistungsstufe betrieben wird. Der damit verbundene Anstieg des Strom-

verbrauchs führt trotz niedriger Gewichtung der Stromkosten in der Belohnungsfunktion dazu, dass andere 

Optimierungsziele überlagert werden. Besonders an sehr kalten Wintertagen, wenn die Wärmepumpenleis-

 

17 Aus Perspektive einer betriebswirtschaftlichen Optimierung – unter den Gesichtspunkten der Klimaneutralität sind alternative Flexibilisierungswege, z. B. 

über Energiespeicher, zu prüfen oder der Bezug von grünem Erdgas (synthetisches Methan). 
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tung nicht mehr ausreicht und der Agent gasbasierte Spitzenlastkessel zuschalten muss, dominiert die Sank-

tionierung des Gasverbrauchs die Gesamtbewertung (vgl. Tabelle 3). In diesen Situationen priorisiert der 

Agent systematisch die Sicherstellung der Wärmeversorgung und die Vermeidung zusätzlicher Kostenpositio-

nen, wodurch in Relation die Erfüllung der Ladeanforderungen aus dem Mobilitätssektor in den Hintergrund 

rückt. Dies wird durch die Überlagerung der Belohnungskomponenten deutlich: Wie die Auswertung der 

Kennzahlen in Tabelle 3 zeigt, war im Monat Dezember ein hoher durchschnittlicher Ladefehlbedarf zu ver-

zeichnen und nur etwa ein Drittel aller Fahrzeuge konnte vollständig geladen werden. Das heißt, an sehr kal-

ten Tagen überlagert die Belohnungsfunktion des Wärmesektors die Ladeanforderungen und der Agent ver-

nachlässigt das Laden der Fahrzeuge systematisch. 

 

Abbildung 29: Vom KI-Agenten in der Trainingsumgebung angefragte Ladeleistung einer Ladesäule an einem Beispieltag im Dezember in 

Abhängigkeit von der Tageszeit und dem relativen Strompreis (Quelle: Eigene Abbildung) 

Zusätzlich führt die Preisorientierung dazu, dass bei ausbleibenden negativen relativen Strompreisen im Ver-

gleich zum Tagesdurchschnittspreis – wie in Abbildung 29 dargestellt – das Laden der Fahrzeuge systema-

tisch vermieden oder verzögert wird, selbst wenn dies betrieblich notwendig wäre. Konkret bedeutet dies, 

dass an Tagen ohne negative Strompreise während der Büro- bzw. Ladezeiten zwischen 9 und 17 Uhr keine 

günstigen Preisfenster für das Laden der Elektrofahrzeuge existieren. Die relativen negativen Strompreise 

treten ausschließlich nachts auf, wenn sich keine E-Fahrzeuge am Pilotstandort, einem Bürogebäude, zum 

Laden befinden. Dadurch fehlt dem Agenten die Anreizstruktur, die Fahrzeuge tagsüber zu laden, was zu ei-

ner systematischen Verzögerung oder Vermeidung des Ladevorgangs führt, obwohl das Laden aus betriebli-

cher Sicht erforderlich wäre. 



   

 

 71 

9.3.5 Optimierungsansätze und Verbesserungen 

Angesichts der identifizierten Herausforderungen im Belohnungssystem wurden verschiedene Optimierungs-

ansätze untersucht, um die Leistung des KI-Agenten zu verbessern. Ein zentrales Handlungsfeld ist die Flexi-

bilisierung der Steuerungsparameter. Durch die gezielte Erhöhung der Soll-Vorlauftemperatur des Pufferspei-

chers um 3 °C sowie die flexible Anpassung dieses Werts durch den KI-Agenten um ±2 °C konnte die Flexibili-

tät im Wärmesektor signifikant gesteigert werden (siehe Tabelle 4, Flexibilisiertes Szenario). Diese Maß-

nahme ermöglicht es dem Agenten, thermische Energie gezielter zu verschieben, den Gasverbrauch zu sen-

ken und gleichzeitig die Anforderungen aus dem Mobilitätssektor besser zu berücksichtigen. Die Erweiterung 

des Handlungsspielraums – etwa durch größere Temperaturdifferenzen im Pufferspeicher – schafft zusätzli-

che Freiheitsgrade, um auf volatile Preissignale zu reagieren und Zielkonflikte zwischen den Sektoren abzu-

mildern.  

Tabelle 4 zeigt die Ergebnisse eines Testlaufs für den Trainingsmonat Dezember. Dabei wurde die Vorlauftem-

peratur im flexibilisierten Szenario um 3 °C gegenüber dem Referenzszenario erhöht. Die Resultate bestäti-

gen die Hypothese, dass die Gasnutzung und die Gaskosten im flexibilisierten Szenario signifikant niedriger 

sind als in einem Szenario ohne zusätzliche Flexibilisierung. Aufgrund der höheren Flexibilität konnten auch 

die täglichen Stromkosten gegenüber dem jeweiligen Tagesdurchschnittspreis reduziert werden. Bemerkens-

wert ist, dass der Agent die Fähigkeit entwickelte, die Elektrofahrzeuge in der Mehrzahl der Fälle vollständig 

zu laden. Während zuvor nur ca. 27 % aller Fahrzeuge vollständig geladen werden konnten, waren es im flexi-

bilisierten Szenario über 85 %. Gleichzeitig fiel der Ladefehlbedarf bei den übrigen, nicht vollständig gelade-

nen Fahrzeugen geringer aus. Diese Verbesserung ist primär darauf zurückzuführen, dass durch den reduzier-

ten Gasverbrauch weniger hohe Bestrafungen anfallen und der Agent somit weniger Zielkonflikten ausge-

setzt ist. 
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Tabelle 4: Auswertung für Dez. 2023 mit erhöhtem Pufferspeicher-Sollwert und größerem Agentenspielraum (Flexibilisiertes Szenario) 

gegenüber dem vorherigen nicht flexibilisierten Szenario. 

Ein vielversprechender Ansatz zur weiteren Optimierung besteht in der Entwicklung adaptiver und kontext-

abhängiger Belohnungsfunktionen. Anstelle fester Gewichtungen könnten die einzelnen Belohnungskompo-

nenten flexibel an äußere Rahmenbedingungen wie die aktuelle Außentemperatur oder das Strompreisni-

veau angepasst werden. Beispielsweise wäre es denkbar, den Strompreis auf einen Durchschnittswert im 

Zeitraum von 6 bis 18 Uhr zu beziehen, um sicherzustellen, dass während der üblichen Bürozeiten auch tat-

sächlich negative bzw. aus Sicht des KI-Agenten günstige Zeitfenster erkannt und genutzt werden können. 

Diese Flexibilität lässt sich sowohl innerhalb eines modular aufgebauten, sektorübergreifenden Einzelagen-

ten umsetzen, bei dem die Belohnungsanteile für Wärme und E-Mobilität getrennt bewertet und anschlie-

ßend zusammengeführt werden, als auch durch den Einsatz eines Multi-Agenten-Systems. In einem solchen 

System übernimmt jeweils ein spezialisierter Agent die Optimierung für einen Sektor und eine übergeordnete 

Orchestrierung sorgt für die Koordination und das Lösen möglicher Zielkonflikte. Beide Ansätze können dazu 

beitragen, ungünstige Überlagerungen von Belohnungsfunktionen in sektorübergreifenden Optimierungs-

aufgaben von NWG zu vermeiden und die Gesamtperformance zu verbessern. 

Ergänzend zur KI-basierten Optimierung können technische und regelbasierte Steuerungsmechanismen ei-

nen wichtigen Beitrag leisten – insbesondere im Hinblick auf aktuelle regulatorische Anforderungen wie §14a 

EnWG. Dazu gehört beispielsweise die Einbindung von Steuersignalen der Netzbetreiber, die im Fall von 

Netzengpässen eine temporäre Begrenzung der Leistungsaufnahme von Wärmepumpen oder Ladesäulen 

ermöglichen. Es ist daher sinnvoll, den KI-Agenten so auszugestalten, dass er diese externen Signale inter-

pretieren und passende Kompensationsstrategien – etwa durch die Nutzung von Pufferspeichern oder die 

zeitliche Verschiebung von Ladevorgängen – umsetzen kann. So lassen sich sowohl die Netzstabilität als 

auch betriebliche Mindestanforderungen, wie etwa eine garantierte Mindestladung der Fahrzeuge, besser 

berücksichtigen. Die Einführung von Fallback-Regeln, die beispielsweise eine Mindestladung unabhängig von 

Preissignalen sicherstellen, kann die KI-Optimierung sinnvoll ergänzen und die Betriebssicherheit weiter er-

höhen.  
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Für die Feldtests (siehe Kapitel 9.2) wurde auf dem KI-Edge-Device bereits ein einfacher, regelbasierter Steue-

rungsmechanismus zur Leistungslimitierung der Ladesäulen hinterlegt. Dieser Mechanismus greift insbeson-

dere bei Vorliegen eines Steuersignals gemäß §14a EnWG und setzt die maximale Ladeleistung je Ladesäule 

automatisch auf das zulässige Limit (z. B. 4,2 kW), unabhängig von der aktuellen Optimierungsentscheidung 

des KI-Agenten. Damit wird sichergestellt, dass regulatorische Vorgaben verlässlich eingehalten werden und 

die Konformität mit den Anforderungen an SteuVE gewährleistet ist. 
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10  Erkenntnisse und Handlungsempfehlungen 

Der erfolgreiche Einsatz eines KI-basierten Steuerungsalgorithmus für NWG unter Berücksichtigung intelli-

genter Messsysteme erfordert ein umfassendes Verständnis der technischen, regulatorischen und wirtschaft-

lichen Rahmenbedingungen. Sie adressieren zentrale Herausforderungen und zeigen Lösungsansätze auf, 

um die Markteinführung und Skalierung entsprechender Technologien zu unterstützen. Die Empfehlungen 

sind dazu in sechs Kernbereiche gegliedert: Innovative Geschäftsmodelle, iMSys+, steuerbare Energieanlagen 

und technische Schnittstellen, GLT, KI-gestütztes Energiemanagement sowie Regulatorik und Standards. 

Diese Handlungsfeldansätze bieten Start-ups und weiteren Akteurinnen wie z. B. KMU eine praxisnahe Orien-

tierung, um KI-gestützte Steuerungslösungen effizient zu implementieren. Sie enthalten zudem Empfehlun-

gen zu rechtlichen Rahmenbedingungen sowie energiewirtschaftliche Anforderungen, die für die Politik und 

Standardisierungsgremien relevant sind. 

 

10.1 Innovative Geschäftsmodelle 

Die energiewirtschaftliche Nutzung von NWG war bislang stark auf klassische Optimierungsziele beschränkt. 

Der Schwerpunkt konventioneller Energiemanagementlösungen konzentrierte sich im Wesentlichen auf drei 

Bereiche: das Spitzenlastmanagement zur Reduzierung von Lastspitzen und der damit verbundenen leis-

tungspreisbasierten Kosten, die Optimierung des Eigenverbrauchs bei vorhandener lokaler Erzeugung sowie 

die allgemeine Steigerung der Energieeffizienz. Obwohl diese Anwendungsfälle etabliert sind, schöpfen sie 

das volle Potenzial moderner, intelligenter EMS nicht aus. Insbesondere die Möglichkeiten einer aktiven 

Marktteilnahme durch intelligente Lastverschiebung als Reaktion auf dynamische Preissignale blieben bis-

lang weitgehend ungenutzt. 
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Für eine zukunftsfähige Positionierung sollten EMS-Anbieter im NWG-Sektor einen Multi-Use-Case-Ansatz 

verfolgen, der über klassische Anwendungsfälle hinausgeht und insbesondere die Integration dynamischer 

Tarife sowie zeitvariabler Netzentgelte berücksichtigt. Vorrangig ist dabei die Nutzung thermischer Speicher 

und die gezielte Aktivierung der Gebäudemasse, um die Flexibilität auf der Wärmepumpenseite zu erhöhen 

und die Wärmeerzeugung zeitlich vom Wärmebedarf zu entkoppeln. Hierfür ist ein Modell des thermischen 

Gebäudeverhaltens erforderlich, um die dynamischen Wechselwirkungen zwischen Speicher, Gebäudemasse 

und Wärmebedarf präzise abzubilden. Ergänzend kann der Einsatz von Stromspeichern die Möglichkeiten zur 

Lastverschiebung auf der Strombezugsseite und die Nutzung von selbsterzeugtem Strom weiter optimieren – 

wobei für eine Speicherinvestition stets eine individuelle Wirtschaftlichkeitsbetrachtung sinnvoll ist. 

10.2 Intelligente Mess- und Steuersysteme 

Die Verbreitung und das Verständnis von iMSys(+) im NWG-Sektor befinden sich derzeit noch in einem frühen 

Stadium. iMSys(+) sind bis dato hauptsächlich im Segment < 100.000 kWh/a verbaut, während bei Großver-

brauchern klassische RLM-Zähler anzutreffen sind. Die gesetzliche Neuausrichtung des iMSys(+)-Rollouts zu 

einem „Steuer-Rollout“ mit der Priorisierung von Messstellen für SteuVE und Erzeugungsanlagen und hohem 

Verbrauch ist ein wichtiger Schritt in die richtige Richtung. Die Umsetzung des iMSys(+)-Rollouts bei den MSB 

ist bereits im Gange. Während die großen MSB auf einem guten Weg sind, die regulatorischen Vorgaben zum 

iMSys(+)-Rollout gemäß MsbG zu erreichen, haben die mittleren und kleineren MSB in der Breite signifikan-

ten Nachholbedarf. Aktuell (Stand März 2025) befinden sich die Systeme zur Steuerung über iMSys+ bei Netz-

betreibern und MSB größtenteils noch im Aufbau. 

Übertragungswege  

In Anbetracht der aktuellen Hochlaufphase des iMSys(+)-Rollouts können von Energieserviceanbieter und 

Hardwareherstellerunternehmen aktuell zwei alternative Übertragungswege für betriebliche Daten genutzt 

werden, soweit dies rechtlich zulässig ist:  

Für betriebliche Daten wie Messdaten (außerhalb der Abrechnung und Bilanzierung), Preisinformationen 

(fürs EMS) und Softwareupdates (für dem iMSys(+) nachgeordnete Komponenten) nutzen Marktakteurinnen 

und -akteure aktuell die sogenannte 2. WAN-Schnittstelle. Diese Vorgehensweise minimiert zwar die operati-

ven Abhängigkeiten zum MSB im täglichen Betrieb des NWG, bietet jedoch nur begrenzte IT-Sicherheitsstan-

dards. 

Für energiewirtschaftlich relevante Daten, wie beispielsweise die netzorientierte Steuerung, Bilanzierungs-, 

Abrechnungsdaten, ist die Nutzung des iMSys+ derzeit zwingend vorgeschrieben. Auch für die Übermittlung 

dynamischer Preissignale sollte mittelfristig eine interoperable und massentaugliche standardisierte Abwick-

lung über das iMSys(+) ermöglicht werden (vgl. TAF 5 in Kapitel 5.1 und 7.2.4). 

Im Hinblick auf die Übermittlung dynamischer Preissignale über das iMSys(+) kann die IT-Sicherheit und der 

praktische Nutzen des iMSys(+) durch die konsequente Ausgestaltung der marktlichen Steuerung gemäß §34 

Absatz 2 MsbG maßgeblich gesteigert werden. Damit marktliche Steuerungsprozesse, also gezielte Eingriffe 

in das Verhalten von Erzeugern und Verbrauchern auf Basis von Preissignalen, effizient und sicher umgesetzt 

werden können, ist eine aktive technische Standardisierung durch technische Standardisierungsgremien 

(z. B. VDE FNN) erforderlich. Dies sollte insbesondere in enger Zusammenarbeit mit relevanten Marktakteu-

rinnen bzw. -akteuren wie Direktvermarkter-, Aggregator-Unternehmen und Energielieferanten erfolgen.  
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Lokale und zentrale EMS-Anbindung 

Darüber hinaus sollte die Nutzung der HAN-Schnittstelle am SMGW für die hochfrequente Messwertbereit-

stellung an örtliche EMS in Betracht gezogen werden. Die Anwendung der neu im Dezember 2024 definierten 

Web-Service-Schnittstelle wird empfohlen, um die Integration zu optimieren und die Installation zusätzlicher 

Hardware (zusätzliche Zähler) zu vermeiden (BSI 2024c). 

10.3 Steuerbare Anlagen und technische Schnittstellen 

Die technische Integration verschiedener Komponenten stellt eine der zentralen Herausforderungen beim 

Einsatz intelligenter EMS dar. In der gegenwärtigen Ausgangssituation ist die Interoperabilität18 zwischen 

iMSys(+), der GLT, den EMS und den steuerbaren Anlagen häufig nicht gegeben. Dies bedeutet, dass ein EMS 

nicht ohne Weiteres ein bestehendes System ersetzen kann und die Kommunikation zwischen den verschie-

denen Komponenten oft mit erheblichen Schwierigkeiten verbunden ist. Zwar existieren verschiedene Kom-

munikationsprotokolle für spezifische Anwendungsfälle, jedoch fehlt es an einer durchgängigen Interopera-

bilität in der Kommunikationskette.  

Komponentenspezifische Kommunikationsprotokolle 

Für die Kommunikation zwischen Elektrofahrzeugen und Ladesäulen wird beispielsweise zunehmend das 

ISO 15118-2(0)-Protokoll verwendet. Von der Ladesäule zum EMS dient OCPP als internationaler Standard, 

wobei Version 1.6 weit verbreitet ist und Version 2.0.1 sich im Rollout befindet. Anlagenübergreifend hat sich 

Modbus TCP/IP als Protokoll international etabliert, allerdings ist es nur bei Wechselrichtern in Form des 

SunSpec-Protokolls als zertifizierter Standard verfügbar. In Deutschland gewinnt das EEBUS-Protokoll auf-

grund des §14a EnWG zunehmend an Bedeutung und wird vom VDE FNN bzw. der BNetzA als Mindeststan-

dard für die digitale Schnittstelle empfohlen (VDE FNN 2025a). Für Wärmepumpen hat sich insbesondere der 

SG-Ready-Standard als herstellerübergreifende Schnittstelle zur Ansteuerung etabliert. 

Offene Schnittstellen und Interoperabilität 

Für Betreiberinnen und Betreiber von NWG ist es daher essenziell, bei der Beschaffung neuer Hardware auf 

publizierte Interoperabilitäts- und Kompatibilitätslisten zu achten. Besondere Aufmerksamkeit sollte auf die 

Verfügbarkeit offener Schnittstellen gelegt werden, um sowohl den Zugriff auf relevante Datenpunkte als 

auch die notwendigen Steuerungsmöglichkeiten für das EMS sicherzustellen. Hardware- und EMS-Anbieter 

sollten ihrerseits die Interoperabilität ihrer Produkte in eigenen Testumgebungen oder in Laboren Dritter sys-

tematisch evaluieren und die Ergebnisse transparent veröffentlichen. Im Hinblick auf Steuerungsmechanis-

men über iMSys(+) sollte die Implementierung des EEBUS-Protokolls in Betracht gezogen werden, da dieser 

als technischer Mindeststandard für die digitale netzorientierte Steuerung vom VDE FNN empfohlen ist. In 

zukünftigen Pilot- und Forschungs- und Entwicklungsprojekten (F&E) sollte zudem gemeinsam mit Herstel-

lern von Wärmepumpen eine Flexibilitäts-Schnittstelle zwischen EMS und Wärmepumpe entwickelt werden, 

um besser auf Preissignale reagieren zu können (vgl. Kapitel 10.6 Regulatorik und Standards, EEBUS-Proto-

koll). 

 

18 Interoperabilität bei technischen Systemen bezeichnet die Fähigkeit verschiedener Systeme, Geräte oder Softwareanwendungen, nahtlos miteinander zu 

kommunizieren und zu interagieren, ohne dass spezielle Anpassungen erforderlich sind. 
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10.4 Gebäudeleittechnik im Nichtwohngebäude 

Die GLT bildet das technische Rückgrat für ein effektives Energiemanagement in NWG und ermöglicht lesen-

den sowie (teilweise) steuernden Zugriff auf verschiedene Energieanlagen im Gebäude. In der Praxis ist je-

doch festzustellen, dass die Planung und Implementierung der GLT häufig nicht spartenübergreifend erfolgt. 

Dies führt insbesondere im Gebäudebestand zu einem erheblichen Integrationsaufwand mit bestehenden 

Systemen. Zudem sind die tatsächlichen Flexibilitätspotenziale oft unbekannt, was eine realistische Ein-

schätzung der wirtschaftlichen Tragfähigkeit innovativer Geschäftsmodelle erschwert. 

Flexibilitätspotenziale erkennen und bewerten 

Betreiberinnen und Betreibern von NWG sowie Anbieterinnen und Anbietern von GLT wird daher empfohlen, 

das Flexibilisierungspotenzial bereits vor der technischen Umsetzung systematisch zu evaluieren. Dabei soll-

ten insbesondere die Möglichkeiten zur Lastverschiebung, beispielsweise bei Ladevorgängen von Elektro-

fahrzeugen oder im Bereich der Wärmeerzeugung, detailliert analysiert werden. Der gezielte Einsatz von Wär-

mespeichern oder Batteriespeichersystemen kann das Flexibilitätspotenzial steigern, bedarf jedoch einer 

individuellen betriebswirtschaftlichen Prüfung. Zudem müssen mögliche Auswirkungen des Speicherverhal-

tens auf das Netz berücksichtigt werden (vgl. Kapitel 10.1). Bei Neubauprojekten sollte von Beginn an eine 

spartenübergreifende Planung der GLT erfolgen, um dezentrale Flexibilitäten später unkompliziert über das 

EMS zugänglich zu machen.  

Forschungsbedarfe an der Schnittstelle EMS und Wärmepumpe 

Angesichts der noch begrenzten praktischen Erfahrungen mit EMS im NWG-Sektor in der Kombination mit 

marktorientierten und netzdienlichen Anreizmechanismen wird ein Bedarf an weiteren Pilot- und For-

schungsprojekten gesehen. Insbesondere in den Kontexten der Sektorkopplung u. a. mit Wärmepumpen sind 

standardisierte und zielführende Regelungsstrategien in der Interaktion mit EMS-Lösungen zu etablieren. Im 

Bereich Heizung und Klimatisierungen sind zudem Langzeiterprobungen über mehrere Heiz- bzw. Kühlsai-

sonzeiten zu empfehlen.  

Architekturentscheidung: Cloud oder Edge 

Bei der Wahl der GLT stehen aktuell im Markt sowohl Cloud- als auch Edge-basierte EMS-Varianten zur Verfü-

gung. Für Gebäudeeigentümerinnen und -eigentümer bietet die Cloud-Lösung zentrale Steuerung und Ska-

lierbarkeit, setzt jedoch eine stabile Internetverbindung und hohe Datenschutzstandards voraus, sofern dies 

im regulatorischen Rahmen geschieht. Die Edge-Variante ermöglicht schnelle, lokale Entscheidungen, er-

höhte Datensouveränität und eine erhöhte IT-Sicherheit durch die Nutzung das iMSys(+), erfordert jedoch 

Investitionen in Hardware vor Ort. Zudem ist die Edge-Variante nicht zwingend auf die Nutzung der 2. WAN 

angewiesen und sichert das Geschäftsmodell gegenüber möglichen regulatorischen Maßnahmen zur 2. WAN 

ab. 

10.5 KI-Steuerungsalgorithmen 

Einige Anbieterunternehmen nutzen empfehlende KI-basierte Softwaresysteme (Recommender-Systeme), 

um Betreiberinnen und Betreiber von Energieanlagen gezielt bei der Betriebsoptimierung zu unterstützen. 

Solche Systeme geben beispielsweise Hinweise auf Anomalien im Anlagenbetrieb, sprechen Empfehlungen 

für wirtschaftlichere Betriebsweisen aus, etwa durch die Verschiebung von Ladezeiten, und bieten zudem 
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Anregungen zur Nachjustierung der Anlagenkonfiguration, wie beispielsweise der Heizkurve bei Wärmepum-

pen. Aufgrund der besseren Nachvollziehbarkeit erfolgt die automatisierte Optimierung jedoch häufig durch 

konventionelle regelbasierte Strategien oder durch den Einsatz gemischt-ganzzahliger Optimierungsverfah-

ren. 

Vertrauen stärken mit Recommender-Systeme 

Recommender-Systeme können eine wichtige Vorstufe zu einem vollautomatisierten Betrieb über ein KI-EMS 

darstellen. Sie bieten der Nutzerin und dem Nutzer die Möglichkeit, ein Gefühl dafür zu entwickeln, wie der 

KI-Agent potenziell auf das Verhalten der Anlagen Einfluss nehmen würde. Durch die transparente Darstel-

lung von Empfehlungen und deren Auswirkungen kann das Vertrauen in die KI-gestützte Steuerung gestärkt 

und die Akzeptanz für eine spätere vollständige Automatisierung gefördert werden.  

Voraussetzungen für die Entwicklung KI-gestützter Steuerungsalgorithmen 

Für EMS-Lösungsanbieterinnen und -anbieter, die einen KI-gestützten Steuerungsalgorithmus entwickeln 

möchten, empfiehlt sich zunächst der systematische Aufbau einer verlässlichen Datengrundlage. Hierzu soll-

ten branchenspezifische Open-Data-Plattformen19 genutzt, vorhandene Datenquellen erschlossen und ei-

gene Energiemesssysteme in ausgewählten Pilotanlagen integriert werden. Ein effizienter Einstieg in die KI-

Entwicklung kann über den Ansatz des Imitation Learning erfolgen, bei dem die KI von bestehenden regelba-

sierten EMS lernt. Die Kombination mit vereinfachten physikalischen Modellen und das sorgfältige Design 

klarer Belohnungsfunktionen sind entscheidende Erfolgsfaktoren für die Entwicklung leistungsfähiger KI-

Modelle. Um die Betriebssicherheit zu gewährleisten, sollten regelbasierte Fallback-Mechanismen implemen-

tiert werden, die bei suboptimaler Funktion der KI-Algorithmen aktiviert werden können.  

Domänenspezifische Agenten statt universeller Lösungen 

Im Projekt zeigte sich, dass die Entwicklung eines gemeinsamen KI-Agenten für unterschiedliche Domänen 

wie Wärmeversorgung und E-Kfz-Lademanagement nicht die gewünschten Optimierungsergebnisse brachte. 

Stattdessen deuten die Erfahrungen darauf hin, dass ein domänenspezifischer Ansatz – also das separate 

Training spezialisierter Agenten für einzelne Anwendungsbereiche – deutlich erfolgversprechender sein 

könnte.  

Multi-Agenten-Systeme und Transfer Learning 

Die parallele Nutzung mehrerer spezialisierter Agenten in einem Mehragentensystem sowie deren gezielte 

Orchestrierung könnten künftig helfen, Zielkonflikte effizienter zu lösen und die Gesamteffizienz zu steigern, 

insbesondere bei komplexen, sektorübergreifenden Optimierungsaufgaben. Dieser Ansatz wurde im Projekt 

selbst jedoch nicht umgesetzt, sondern als Empfehlung für zukünftige Entwicklungen identifiziert. 

Die Entwicklung robuster KI-Modelle erfordert zudem eine enge Zusammenarbeit mit Forschungs- und Ent-

wicklungspartnerinstitutionen sowie eine sorgfältige Prüfung des jeweiligen Anwendungsfalls. Ist der Einsatz 

von KI gerechtfertigt, bietet der im Pilotprojekt entwickelte Ansatz eine gute Grundlage für weitere Anwen-

dungen. Perspektivisch könnte insbesondere Transfer Learning dazu beitragen, trainierte Modelle auch auf 

andere NWG mit ähnlicher technischer Ausstattung – wie Wärmepumpe, PV-Anlage, Ladeinfrastruktur und 

Batteriespeicher – zu übertragen und mit begrenztem Zusatzaufwand an neue Standorte anzupassen. Dies 

 

19 Beispiele für Open-Data-Plattformen sind die ENTSO-E Transparency Platform, die unter anderem Preisdaten bereitstellt; das Adaptive Charging Network 

(ACN) Dataset, das Ladedaten von Elektrofahrzeugen bietet; und die openMeter Datenplattform, die Zählerdaten für verschiedene Gebäudetypen liefert. 
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gilt beispielsweise für Büro- und Verwaltungsgebäude, Hotels, Bildungs- und Forschungseinrichtungen, Ge-

sundheitsimmobilien, Einzelhandelsimmobilien sowie Sport- und Freizeiteinrichtungen. Ob und in welchem 

Umfang sich dieser Ansatz in der Praxis bewährt, sollte jedoch in zukünftigen Projekten gezielt evaluiert wer-

den. 

10.6 Regulatorik und Standards 

Übertragung von Tarifinformationen 

In der aktuellen Ausgangssituation existiert kein interoperabler und standardisierter Weg zur Übertragung 

von dynamischen Preisinformationen vom Lieferanten zum EMS. Anbieterunternehmen von EMS-Lösungen 

greifen daher aktuell auf proprietäre Webschnittstellen einzelner Lieferanten zurück. Diese Vorgehensweise 

kann zu IT-Sicherheitsproblemen führen. Bei der Konzeption dieses Verfahrens können die etablierten Markt-

kommunikationsprozesse, die Möglichkeiten des CLS-Proxy-Kanals sowie geeignete TAF – beispielsweise 

TAF 5 oder TAF 7 – berücksichtigt werden. Dadurch ließe sich eine IT-sichere Preisübertragung realisieren, die 

vor großflächiger Preismanipulation schützt und damit potenzielle erhebliche Belastungen für die Netzinfra-

struktur verhindert. 

Netzentgeltsystematik und netzorientierte Steuerung 

Die derzeitige Netzentgeltsystematik für Betreiberinnen und Betreiber größerer NWG mit RLM bietet kaum 

Anreize für eine zeitliche Verlagerung des Stromverbrauchs. Im Gegenteil: Durch die Abrechnung mit einem 

Leistungspreis neben dem Arbeitspreis können sogar höhere Kosten durch Verbrauchsspitzen entstehen, was 

der Idee einer flexiblen, preisoptimierten Betriebsweise entgegensteht. Werden Lasten gezielt in Zeiten nied-

riger Strompreise und hoher erneuerbarer Erzeugung verschoben, kann dies im aktuellen System dazu füh-

ren, dass sich mehrere Verbrauchsanlagen gleichzeitig auf diese günstigen Zeitfenster konzentrieren. 

Dadurch können neue Lastspitzen entstehen, die aktuell über den Leistungspreis besonders teuer abgerech-

net würden. Dies steht im klaren Gegensatz zum aktuellen Paradigma der Lastspitzenkappung, das auf eine 

möglichst gleichmäßige Lastverteilung abzielt. 

Um dieses strukturelle Hemmnis zu adressieren, erscheint eine Überprüfung und mögliche Weiterentwick-

lung der Netzentgeltsystematik sinnvoll, um Kundinnen und Kunden mit RLM eine stärkere Ausrichtung ihres 

Verbrauchsverhaltens an Preissignalen zu ermöglichen. In diesem Zusammenhang sind insbesondere die 

laufenden Verfahren der Bundesnetzagentur zur Fortentwicklung der Industrienetzentgelte (BK4-24-027) so-

wie zur AgNes von Bedeutung. Letzteres Verfahren berücksichtigt u. a. auch einen Dynamisierungsansatz auf 

Basis der aktuellen Netzauslastung. In dem Zuge könnte geprüft werden, inwiefern sich variable Netzentgelte 

(ähnlich wie Modul 3 des §14a EnWG) auf RLM-Kunden außerhalb der Niederspannung übertragen ließen 

(siehe Kapitel 4.2.1). 

Datenverfügbarkeit und Schnittstellen 

In den durchgeführten Feldtests hat sich die nicht vorhandene Bereitstellung von Ladebedarfen an der Lade-

säule als signifikantes Hindernis für eine präzise Optimierung herausgestellt. Ähnliche Probleme wurden bei 

Wärmepumpen beobachtet, wo bestimmte Daten oder Steuermöglichkeiten entweder nicht verfügbar waren 

oder nur als kostenpflichtiges Zusatzpaket angeboten wurden. 

Zur Überwindung dieser Einschränkungen wird die Einführung offener und standardisierter Schnittstellen für 

den Datenaustausch empfohlen. In bestimmten Anwendungsfällen erscheint es sinnvoll, die Bereitstellung 
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solcher Schnittstellen gesetzlich vorzuschreiben oder durch entsprechende Förderbedingungen zu incenti-

vieren. Als Beispiel kann die Renewable Energy Directive (RED) III dienen (EUROPEAN COMISSION 2024). Diese 

Richtlinie verlangt Echtzeitzugang zu grundlegenden Informationen über den Batteriezustand, einschließlich 

Ladezustand, Gesundheitszustand (State of Health, SoH) und Kapazität. Herstellerunternehmen müssen 

diese Informationen relevanten Dritten ohne Diskriminierung oder Kosten zur Verfügung stellen. Im Bereich 

der E-Mobilität sollte die Verbreitung der Standards OCPP 2.0.1 und ISO 15118-20 zur Übertragung notwendi-

ger Daten wie Ladebedarfe und SoC vom Fahrzeug über die Ladesäule bis ins EMS bzw. ins Ladesäulen-Ba-

ckend gezielt gefördert werden. Der Regulator kann dies durch eine Kombination aus Förderbedingungen, 

Anforderungen in öffentlichen Ausschreibungen, gesetzlichen Vorgaben sowie technischen Richtlinien so-

wohl für Ladesäulen als auch für Elektrofahrzeuge wirksam umsetzen. Eine Übertragung auf den Wärmesek-

tor im Hinblick auf die Flexibilisierung von Wärmepumpen sollte beispielsweise in Studien weiter konkreti-

siert werden. 

EEBUS-Protokoll 

Obwohl EEBUS vom VDE FNN bzw. der BNetzA als Mindeststandard für die netzorientierte Steuerung emp-

fohlen wird, fehlt es bislang an einer interoperablen Marktdurchdringung dieses Protokolls über alle relevan-

ten Marktakteurinnen und -akteure hinweg. Besonders problematisch erscheint die unspezifische Dokumen-

tation, die eine eigenständige Implementierung erheblich erschwert und oft zu Verzögerungen in der prakti-

schen Anwendung führt. 

Um die Marktdurchdringung zu fördern und die herstellerübergreifende Interoperabilität des EEBUS-Proto-

kolls zu gewährleisten, wird die Entwicklung einer offiziellen Referenzimplementierung empfohlen. Diese 

Referenzimplementierung würde die semantische Interoperabilität zwischen den verschiedenen Herstel-

lerumsetzungen sicherstellen und eine beschleunigte Verbreitung des Standards ermöglichen. Ergänzend 

sollte eine Komponentenzertifizierung für spezifische EEBUS-Use-Cases aufgesetzt werden. Diese umfasst 

die Zertifizierung der Systemarchitektur (SHIP/SPINE), die Validierung konkreter Use Cases und erweiterte 

Interoperabilitätstests. Umfangreiche Integrationsprüfungen, wie sie derzeit in EEBUS-Plugfests und Testla-

boren durchgeführt werden, können durch standardisierte Testszenarien und automatisierte Testtools syste-

matisiert werden. 

In zukünftigen Pilot- und Forschungsvorhaben sollten zudem neue Anlagen-spezifische Use Cases erprobt 

und evaluiert werden. Dazu zählen beispielsweise das Monitoring und die Konfiguration von Temperaturen 

für Klima- und Heizungsanlagen sowie die Übermittlung von Anreiztabellen für steuerbare Verbraucher (EE-

BUS INITIATIVE E.V. 2022). Letztere könnten Preis-Anreiztabellen umfassen, die gezielt mit „kostenloser“ Eigen-

erzeugung kombiniert werden. Diese Vorgehensweise würde es ermöglichen, die Steuerhoheit über kom-

plexe Wärmeversorgungssysteme weiterhin bei den Herstellerunternehmen zu belassen. Dadurch könnten 

potenzielle Risiken, die mit Herstellungs-Garantien verbunden sind, minimiert werden. 
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11 Fazit 

Projektziel und Ergebnisse 

Das Projekt SET Hub Pilot 4 verfolgte das ambitionierte Ziel, KI-EMS mit intelligenten Mess- und Steuersyste-

men für NWG zu entwickeln und zu erproben. Dieses Ziel wurde erfolgreich erreicht, indem ein auf RL basie-

rendes KI-EMS mit Cloud-Edge-Architektur für den Anwendungsfall dynamischer Tarife in Kombination mit 

zeitvariablen Netzentgelten demonstriert wurde. Die Implementierung erfolgte an einem Bürostandort des 

Fraunhofer IEE, wobei zwei Ladesäulen, eine emulierte PV-Anlage und eine Wärmepumpe integriert wurden. 

Der entwickelte KI-Agent bewies seine Leistungsfähigkeit, indem er Elektrofahrzeuge zu Zeiten niedriger 

Preise und hoher lokaler PV-Erzeugung lud und dabei effektiv mit der örtlichen GLT kommunizierte. Obwohl 

der KI-Steuerungsalgorithmus für die Wärmepumpe nur im KI-Training analysiert werden konnte, wurden 

wertvolle Erkenntnisse für einen flexibleren Betrieb gewonnen, die langfristige Kosteneinsparungen bei dy-

namischen Preisanreizen versprechen. Besonders hervorzuheben ist die erfolgreiche Demonstration der 

netzorientierten Steuerung gemäß §14a EnWG über die Infrastruktur des iMSys+. Dies umfasst die gesamte 

Prozesskette von der MaKo über die BDEW-Web-API, die Systeme des MSB, das SMGW und den CLS-Kommu-

nikationsadapter bis hin zum EMS und den steuerbaren Anlagen. 

Zusammenfassung der Handlungsempfehlungen 

Der erfolgreiche Einsatz KI-basierter EMS in den NWG profitiert von einer stabilen, sicheren und interoperab-

len Datenübertragungsinfrastruktur. Offene, standardisierte Protokolle wie EEBUS und eine standardisierte 

Schnittstelle am HAN können dabei die Integration dynamischer Tarife, netzorientierte Steuerung sowie die 

Kopplung von Anlagen, EMS und GLT erleichtern. Eine breite Einführung intelligenter Mess- und Steuersys-

teme unterstützt zudem die Nutzung von Flexibilitätspotenzialen und dynamischen Strompreisen im NWG-

Sektor. Ein gezielter und beschleunigter Rollout kann diese Entwicklung weiter fördern. 

Im Bereich der Steuerungsalgorithmen hat sich insbesondere das RL als vielversprechender Ansatz erwiesen, 

da es die gleichzeitige Optimierung von Nutzerinnen- und Nutzerkomfort, Energiekosten und Effizienz er-

möglicht. Gerade in komplexen, sektorübergreifenden Systemen können KI-gestützte Methoden Vorteile bie-

ten, da sie in der Lage sind, dynamische Wechselwirkungen und systemübergreifende Abhängigkeiten besser 

abzubilden als klassische Verfahren. Ein gestufter Einstieg über Imitation Learning sowie die Implementie-

rung von Fallback-Mechanismen erhöhen die Robustheit der Systeme. Jedoch ist im Einzelfall eine sorgfäl-

tige Evaluierung nötig, um die tatsächlichen Potenziale dieser KI-Ansätze im Vergleich zu alternativen Metho-

den umfassend zu bewerten. 

Die Integration von Energiespeichern – sowohl thermisch als auch elektrisch – und die spartenübergreifende 

Planung der GLT sind zentrale Hebel, um Flexibilitätspotenziale umfassend zu erschließen und eine effiziente 

Steuerung aller relevanten Anlagen zu gewährleisten. Hierbei sollten bereits in der Planungsphase Schnitt-

stellen und Steuerungsmöglichkeiten für zukünftige Anwendungsfälle berücksichtigt werden. 

Ausblick 

In den kommenden Jahren könnten sich im NWG-Sektor dynamische Preismodelle zunehmend etablieren 

und damit neue Anreize für ein flexibles, marktorientiertes Energiemanagement schaffen. Ein wichtiger tech-

nologischer Baustein hierfür ist der fortschreitende Rollout von iMSys(+). Auf Basis dieser Infrastruktur erge-

ben sich potenziell neue Möglichkeiten für NWG, die am Spot-Markt optimiert werden können. Insbesondere 
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mit einer Beteiligung am Intraday-Markt, beispielsweise durch die Vermarktung von Flexibilitäten über Ag-

gregatoren oder virtuelle Kraftwerke, können betriebswirtschaftliche Vorteile erwirtschaftet werden. Diese 

Entwicklungen könnten zusätzliche Erlösmöglichkeiten eröffnen und die Rolle von NWG als aktive Bestand-

teile im Energiesystem perspektivisch stärken. 

Zukünftige Forschungs- und Entwicklungsarbeiten sollten sich auf die Vertiefung der Erkenntnisse im Bereich 

der Wärmeversorgung konzentrieren und Kooperationen mit Wärmepumpenherstellerunternehmen anstre-

ben, um effektive Reaktionen auf Preissignale zu entwickeln. Darüber hinaus ist es wichtig, standardisierte 

Wege für die Übertragung individueller dynamischer Preisinformationen vom Lieferanten über das SMGW bis 

zum EMS voranzutreiben. 

Hinsichtlich der Übertragbarkeit legen die im Pilotprojekt gewonnenen Erkenntnisse nahe, dass sich zentrale 

Ansätze auch auf viele NWG mit ähnlicher Anlagenkonfiguration – insbesondere Kombinationen aus Wärme-

pumpe, PV-Anlage, Ladeinfrastruktur und optional Batteriespeicher – anwenden lassen könnten. Dies um-

fasst vor allem Büro- und Verwaltungsgebäude, Hotels, Bildungs- und Forschungseinrichtungen, Gesund-

heitsimmobilien, Einzelhandelsimmobilien sowie Sport- und Freizeiteinrichtungen. Perspektivisch kann 

Transfer Learning dazu beitragen, vortrainierte KI-Modelle effizient an neue Standorte und spezifische Be-

triebsbedingungen anzupassen. Dadurch können der Implementierungsaufwand und der Ressourcenbedarf 

potenziell verringert werden. 

Regulatorische Hemmnisse, insbesondere im Bereich der Netzentgeltsystematik, sollten abgebaut werden, 

um die Potenziale innovativer Energiemanagementlösungen im Nichtwohngebäudebereich voll auszuschöp-

fen. Dies ist insbesondere für Großverbrauchsanlagen mit zusätzlicher Leistungspreis-Komponente von zent-

raler Bedeutung. Die Bundesnetzagentur hat sich mit den aktuell laufenden Verfahren – insbesondere zur 

Festlegung der Allgemeinen Netzentgeltsystematik (AgNes) und zur Fortentwicklung der Industrienetzent-

gelte (BK4-24-027) – bereits auf den Weg gemacht, die bestehenden Strukturen zu überprüfen und weiterzu-

entwickeln. 

Darüber hinaus hat sich im Verlauf des Projekts gezeigt, dass die erfolgreiche Entwicklung und Implementie-

rung integrierter Lösungen eine enge Zusammenarbeit verschiedener Akteurinnen und Akteure entlang der 

gesamten Wertschöpfungskette erfordert. Nur durch den koordinierten Austausch zwischen Technologiean-

bieterunternehmen, Netzbetreibern, Energieversorgern, Regulierungsbehörden und Endkundinnen und -

kunden können innovative Ansätze effizient umgesetzt und Synergien optimal genutzt werden. Dies unter-

streicht die Bedeutung von sektorübergreifenden Partnerschaften und Zusammenarbeit und offenen Innova-

tionsprozessen gemeinsam mit Start-ups für die erfolgreiche Transformation des Energiesystems. 
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Umsetzung der netzorientierten Steuerung. Nach abgeschlossenem Konsultationsverfahren hat VDE FNN 

seine Empfehlungen zum Stand der Technik für die Umsetzung der netzorientierten Steuerung finalisiert 

(BK6-22-300, Tenorziffern 2 a, b und c). <https://www.vde.com/de/fnn/aktuelles/vde-fnn-empfehlungen-foer-

dern-die-massengeschaeftstaugliche-umsetzung-der-netzorientierten-steuerung>. 

VDE FNN 2025c 

Forum Netztechnik/Netzbetrieb im VDE (VDE FNN): Impuls “Steuerungsadministration bei der Steuerung aus 

https://www.mobilityhouse.com/de_de/unser-unternehmen/presse/artikel/rheinenergie-nutzt-intelligente-autostromloesung-von-the-mobility-house
https://www.mobilityhouse.com/de_de/unser-unternehmen/presse/artikel/rheinenergie-nutzt-intelligente-autostromloesung-von-the-mobility-house
https://www.vde.com/de/fnn/aktuelles/vde-fnn-empfehlungen-foerdern-die-massengeschaeftstaugliche-umsetzung-der-netzorientierten-steuerung
https://www.vde.com/de/fnn/aktuelles/vde-fnn-empfehlungen-foerdern-die-massengeschaeftstaugliche-umsetzung-der-netzorientierten-steuerung
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dem SMGW". <https://www.vde.com/de/fnn/aktuelles/weitere-steuerungsmoeglichkeit-erschliessen--di-

rekte-steuerung-aus-dem-smart-meter-gateway>. 

 

https://www.vde.com/de/fnn/aktuelles/weitere-steuerungsmoeglichkeit-erschliessen--direkte-steuerung-aus-dem-smart-meter-gateway
https://www.vde.com/de/fnn/aktuelles/weitere-steuerungsmoeglichkeit-erschliessen--direkte-steuerung-aus-dem-smart-meter-gateway
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Anhang 

 

Tabelle 5: Überblick über die im Projekt verwendeten Daten im Training (historisch) sowie im Pilotbetrieb (Echtzeit). Prognosedaten 

wurden sowohl im KI-Training als auch in den Demonstrationen genutzt. 
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