

The Hydrogen Opportunity

Renewable electricity requires large overcapacities

Agora Energiewende; Stand: 15.02.2017, 14:10

- + A full electrification would require significant overcapacities
- + Every additional kWh in winter time is a burden for the power system

We are lacking renewable solutions for oil and gas

- + Renewable electricity is competitive, but no solutions for oil and gas sector
- + Ambitious renewable energy consumption targets: 2030 = 30% and in 2050 = 60%
- + All-electric approach seems economically and technically unfeasible

Full electrification and efficiency increase do not suffice

+ Even a full renewable electrification and massive efficiency increases in oil and gas based applications (-50%) do not suffice

Green hydrogen closes the gap

- + Hydrogen urgently needed to connect the power sector with the oil and gas sectors (→ sector integration)
- + Hydrogen promises a better integration of and more renewables in all sectors

Hydrogen opportunities for the industry

Hydrogen development roadmap

Green hydrogen for refineries

- Reduce emissions and provide flexibility for electricity grid
- No need for infrastructural investments
- Cost reductions for electrolysers
- Efficiency improvements
- Kick-start for a Power-to-Gas industry in the EU

Green hydrogen for industries

- Substantial emission reductions
- Limited infrastructure changes

Green hydrogen mobility

- Scaling up hydrogen mobility (fueling stations, cars, trains)
- Alternative to battery vehicles

Green gas infrastructure

- Utilization of natural gas infrastructure - directly or after methanation
- Re-electrification makes from P2G a flexible back-up for Renewables
- Development of hydrogen infrastructure in form of grids and storage

Green hydrogen for refineries

Source: Uniper

+ No additional costs for end-customers. The commercial business case depends on a level playing field with (advanced) biofuels.

Green hydrogen for industries (e.g. steel)

There are multiple hydrogen projects in the steel industry:

ThyssenKrupp: Carbon2Chem

Voestalpine: H2FUTURE

Flachstahl Salzgitter GmbH: GrInHy project

SSAB: Carbon-dioxide-free steel industry

+ "The EU's climate and energy goals stipulate a 40 percent reduction of CO2 emissions by 2030, which poses almost unsolvable problems for energy-intensive industries. The H2FUTURE project is an important milestone on the path towards coupling the energy and industry sectors."

Sunfire #1 partner of Salzgitter AG

Ordentliche Hauptversammlung 1. Juni 2017

SALCOS – SAlzgitter Low CO₂ Steelmaking

Anwendung von Wasserstoff (H₂) statt Kohlenstoff (C) zur Eisenerzreduktion

- Nutzung bereits etablierter
 (Direktreduktion mit Erdgas)
 sowie neuartiger (Wasserstoffproduktion und -einsatz)
 Technologien
- Integration in bestehendes und optimiertes Hüttenwerk
- stufenweise Reduktion der CO2-Emissionen: zwischen 10 % und 80 % CO₂-Einsparung!

... und die Zukunft der CO2-reduzierten Stahlerzeugung im Blick

Sunfire in a nutshell

Company facts

Knowhow

- >90 Employees
- Skills in Ceramics, Stack + System Production, Engineering, Synthesis Processes, etc.

Investors

Patents

• 43 patent families (i.e. »process patent sunfire« WO/2008/014854)

Recognition

- EcoSummit Silver Award 2014/2015
- Cleantech 100 Company 2014/2015/2016 (only fuel cell + electrolysis company)
- Fast Company Most Innovative Company of 2016 (with Tesla and Toyota)
- German gas industry's 2016 Innovation & Climate Protection Award

Revenues

Multi-million Euro Revenues in Global Markets since 2011

Core USPs for a game changer electrolysis

- + Highest efficiency in hydrogen production: 3.7 kWh/Nm³ (82%_{LHV})
- + Tolerance to carbon in electrolysis mode via co-electrolysis of CO₂ and H₂O
- + Flexibility of operation between 0-125% and idling mode capability

Fast track to commercialization

+Conclusions

Conclusions

- + An all-electric scenario seems not feasible. Hydrogen is needed to fulfil renewable energy targets
- + Hydrogen is coming fast and at large volume with unexpected business cases first (e.g. in refineries and steel industry)
- + Hydrogen in refineries does not require any additional subsidies and creates no extra costs for end-customers. It only needs a level playing field with biofuels.
- + Sunfire is developing a game changer electrolysis with significantly higher efficiency and low CAPEX

THANK YOU FOR YOUR INTEREST!

Nils Aldag
Managing Director
Co-Founder

sunfire GmbH
Gasanstaltstraße 2
01237 Dresden
Germany

W: www.sunfire.de