

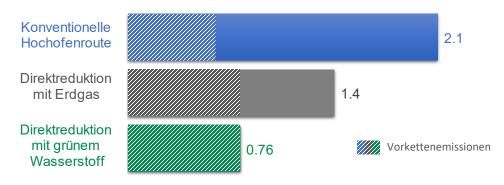
Gefördert durch:

aufgrund eines Beschlusses des Deutschen Bundestages

© thyssenkrupp Steel Europe

Die Duisburger Vorreiter der grünen Stahlproduktion

Transformation der Stahlindustrie...



... von der konventionellen Hochofenroute...

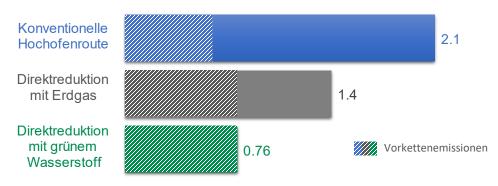
$$Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$$

kg CO₂eq/kg Warmband

Abb. 1: Treibhausgaspotential von Warmband für verschiedene Produktionsrouten nach [1]

[1] Suer, J., Ahrenhold, F. & Traverso, M. J. Sustain. Metall. 8, 1532–1545 (2022)

Transformation der Stahlindustrie...



... zur wasserstoffbasierten Direktreduktionsroute.

$$Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$$

 $Fe_2O_3 + 3H_2 \rightarrow 2Fe + 3H_2O$

kg CO₂eq/kg Warmband

Abb. 1: Treibhausgaspotential von Warmband für verschiedene Produktionsrouten nach [1]

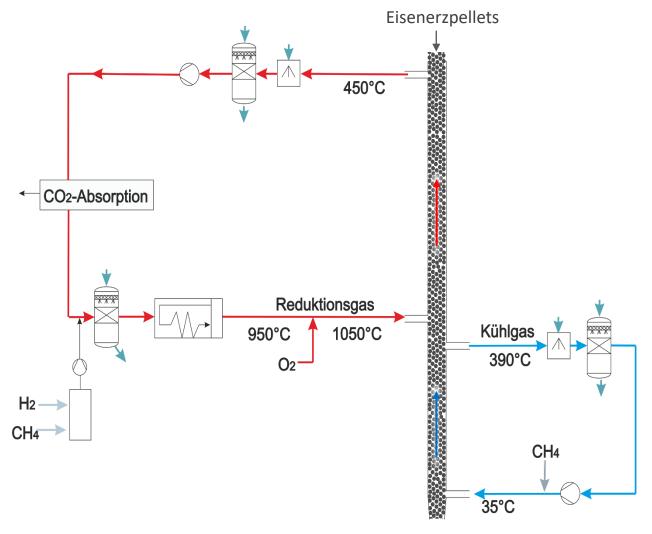
[1] Suer, J., Ahrenhold, F. & Traverso, M. J. Sustain. Metall. 8, 1532–1545 (2022)

Reallabor H₂Stahl

Wasserstofftechnologien zur schrittweisen Dekarbonisierung der Stahlindustrie:

- 1. Bau & Betrieb einer Direktreduktions-Versuchsanlage
- 2. Reduktion von Reststoffen mit H₂ in einem **Drehrohrofen** (unter Vorbehalt)
- 3. Sonderuntersuchungen

> Konsortium:



- > Projektlaufzeit: 5 Jahre (Sept. 2021 Aug. 2026, Verlängerung geplant)
- > ca. 74 Mio. € Projektbudget, davon rd. 37 Mio. € Fördermittel des BMWK

Direktreduktionsverfahren

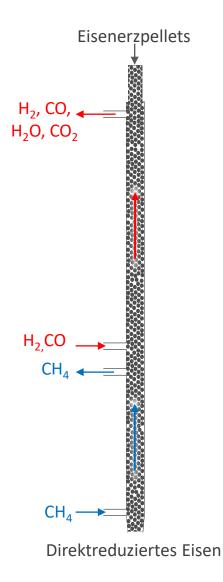
Direktreduziertes Eisen (DRI)

Bau und Betrieb einer Direktreduktions-Versuchsanlage

	DR-Versuchsanlage
DRI	ca. 100 kg/h
Reduktionsgas	ca. 350 Nm³/h
Gastemperatur	< 1050°C
Einsatzmaterial	Pellet (DR, Hochofen) Stückerz Sinter Hüttenreststoffe
Reduktionsgas	Erdgas Koksofengas Konvertergas H ₂

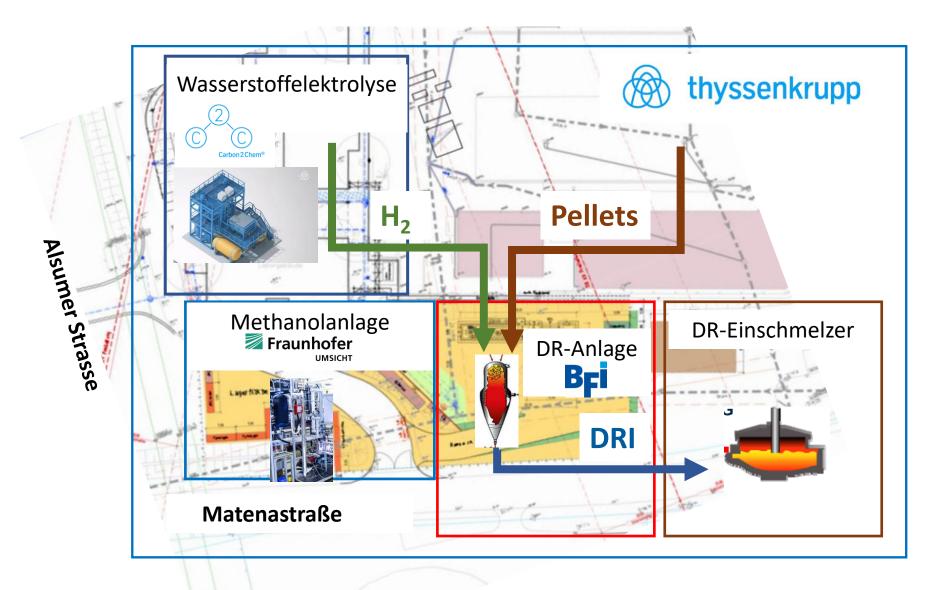
Begleitung der Transformation zu einer wasserstoffbasierten Direktreduktion

=> Hohe Flexibilität bezüglich Einsatzmaterialien, Gaszusammensetzung und Betriebsbedingungen erforderlich


Zielgrößen der Forschung sind

- > CO₂-Ersparnis, Produktqualität, Anlagenperformance
- > Erkenntnisse zum Anlagenhandling und Sicherheit

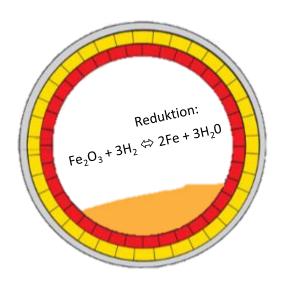
Bau und Betrieb einer Direktreduktions-Versuchsanlage



- Versuchsanlage ist technisch & kaufmännisch abgestimmt – Bestellung steht aus
- > Betrieb über 3 Jahre ab 2026
- Einbindung in neues Nachhaltigkeitszentrum neben dem Carbon2Chem-Gelände
 - => Synergien nutzen

Nachhaltigkeitszentrum tkSE

Reduktion von Reststoffen mit H₂ in einem Drehrohrofen

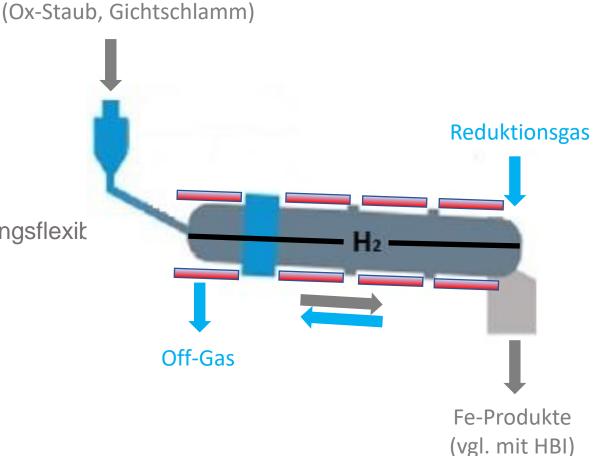


Ziel:

- Bau eines Drehrohrofens im industriellen Maßstab
- Inbetriebnahme und Durchführung von Betriebskampagnen

Aktueller Stand:

- Erste Abstimmung zur Umstellung auf Drehrohrofen mit PtJ und BMWK ist erfolgt
- > Anpassung der Antragsunterlagen ist in Arbeit
- > Gremienfreigabe der Investitionen der Projektpartner
- Prüfung und Freigabe des Änderungsantrages durch PtJ und BMWK steht noch aus


Reduktion von Reststoffen mit H₂ in einem Drehrohrofen

Untersuchungsschwerpunkte

- > Reduktionsverhalten
- > Effizienz des H₂-Umsatzes
- > Einsatz verschiedener Reststoffe
- > Sicherheit
- > Wasserstoffversorgung inkl. Versorgungsflexik
- > CO₂-Bilanzierung

Reststoffe

Potential des Drehrohrofens

Technische Machbarkeit

 Vorversuche mit Reststoffen bereits erfolgreich durchgeführt

Potential der CO₂-Minderung

 Hohe spezifische CO₂-Ersparnis von 5-14 kg CO₂ eq./kg H₂

Wirtschaftliche industrielle Umsetzung

 Herstellung von "HBI" aus anfallenden Reststoffe

 Längerfristige Investition in Richtung Nachhaltigkeit

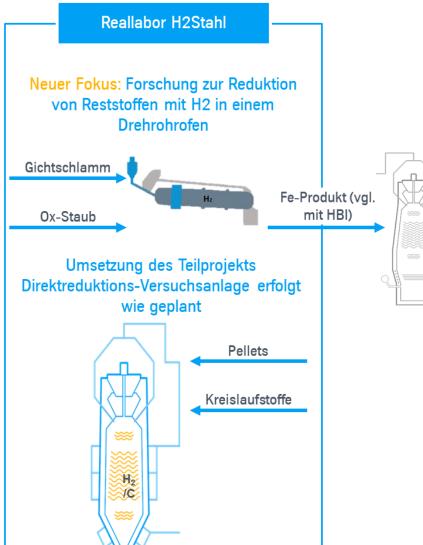
Zukunftstechnologie

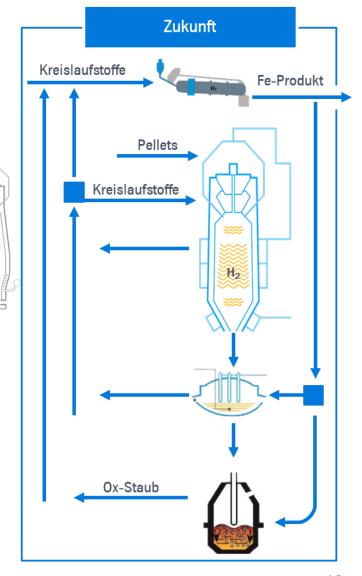
 Dauerhaftes Recycling von bisher und zukünftig vermehrt anfallenden Reststoffen

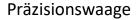
Bau einer H₂-Pipeline

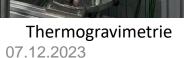
- Verlegung einer H₂-Pipeline vom Air Liquide-H₂-Pipelinenetz bis zum tkSE-Werksgelände
- > Fertigstellung: Nov. 2022
- > Bisherige Länge: 4,3 km
- Fortführung der Pipeline auf dem tkSE-Werksgelände zum Drehrohrofen ist vorbehaltlich der Bewilligung geplant
- ⇒Anschluss an bisherige und zukünftige H₂-Erzeuger gewährleistet




Unter Vorbehalt Ro


Beitrag von H₂Stahl für den Transformationsprozess

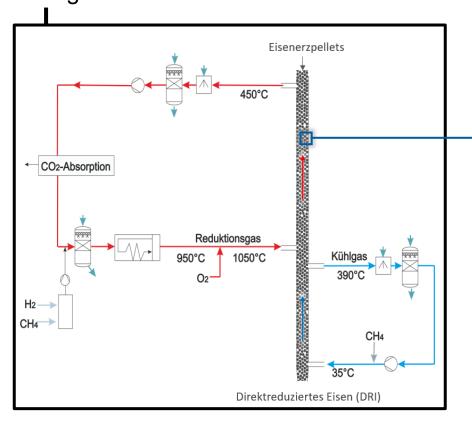



Sonderuntersuchungen

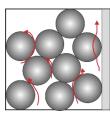
Probenkorb mit Eisenerzpellets

Begleitende Untersuchungen mit Versuchsanlagen im BFI-Technikum, u.a. zu

- Reduktionsverhalten mit H₂
- Aufkohlungsverhalten
- Sticking


Steuerung Technikumsanlagen

Simulationen der Direktreduktion



Flowsheet-Simulation des gesamten Direktreduktionsprozesses inkl. Reduktions- und Kühlgaskreislauf

Partikelaufgelöste CFD-Simulation von Ausschnitten aus dem Direktreduktionsreaktor

Vielen Dank für Ihre Aufmerksamkeit!

Kontakt: M.Sc. Theresa Overbeck

VDEh-Betriebsforschungsinstitut GmbH

Sohnstraße 69 · 40237 Düsseldorf

Telefon +49 211 98492-212

E-Mail theresa.overbeck@bfi.de · www.bfi.de

